Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 249, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430263

RESUMO

A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.


Assuntos
Aldose-Cetose Isomerases , Lacticaseibacillus rhamnosus , Humanos , Raios X , Ramnose , Monossacarídeos
2.
Appl Microbiol Biotechnol ; 107(1): 233-245, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441206

RESUMO

Transketolase is a key enzyme in the pentose phosphate pathway in all organisms, recognizing sugar phosphates as substrates. Transketolase with a cofactor of thiamine pyrophosphate catalyzes the transfer of a 2-carbon unit from D-xylulose-5-phosphate to D-ribose-5-phosphate (5-carbon aldose), giving D-sedoheptulose-7-phosphate (7-carbon ketose). Transketolases can also recognize non-phosphorylated monosaccharides as substrates, and catalyze the formation of non-phosphorylated 7-carbon ketose (heptulose), which has attracted pharmaceutical attention as an inhibitor of sugar metabolism. Here, we report the structural and biochemical characterizations of transketolase from Thermus thermophilus HB8 (TtTK), a well-characterized thermophilic Gram-negative bacterium. TtTK showed marked thermostability with maximum enzyme activity at 85 °C, and efficiently catalyzed the formation of heptuloses from lithium hydroxypyruvate and four aldopentoses: D-ribose, L-lyxose, L-arabinose, and D-xylose. The X-ray structure showed that TtTK tightly forms a homodimer with more interactions between subunits compared with transketolase from other organisms, contributing to its thermal stability. A modeling study based on X-ray structures suggested that D-ribose and L-lyxose could bind to the catalytic site of TtTK to form favorable hydrogen bonds with the enzyme, explaining the high conversion rates of 41% (D-ribose) and 43% (L-lyxose) to heptulose. These results demonstrate the potential of TtTK as an enzyme producing a rare sugar of heptulose. KEY POINTS: • Transketolase catalyzes the formation of a 7-carbon sugar phosphate • Structural and biochemical characterizations of thermophilic transketolase were done • The enzyme could produce non-phosphorylated 7-carbon ketoses from sugars.


Assuntos
Thermus thermophilus , Transcetolase , Transcetolase/química , Transcetolase/metabolismo , Ribose , Monossacarídeos , Fosfatos , Cetoses , Carbono
3.
Biosci Biotechnol Biochem ; 87(8): 850-856, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37156528

RESUMO

d-Aldotetroses are rare sugars that are obtained via chemical synthesis in low yield. In this study, we demonstrated that d-aldotetroses could be produced using 3 isomerases. First, l-erythrulose was epimerized using d-tagatose 3-epimerase from Pseudomonas cichorii ST-24. The specific optical rotation of the reaction solution gradually decreased to zero, indicating that approximately 50% of the l-erythrulose was converted to d-erythrulose. d, l-Erythrulose mixture was isomerized with d-arabinose isomerase from Klebsiella pneumoniae 40bXX to produce d-threose, resulting in a conversion rate of 9.35%. d-Erythrose production using l-rhamnose isomerase from Pseudomonas stutzeri LL172 resulted in a conversion rate of 12.9%. Because of the low purity of the purchased d-erythrose, the product was reduced by the Raney nickel catalyst compared with authentic erythritol. We confirmed the products using HPLC and 13C-NMR spectra. This is the first report of d-aldotetrose production using an enzymatic reaction.


Assuntos
Aldose-Cetose Isomerases , Tetroses , Hexoses , Isomerases , Racemases e Epimerases
4.
Biosci Biotechnol Biochem ; 87(10): 1193-1204, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37355782

RESUMO

Allitol is a hexitol produced by reducing the rare sugar D-allulose with a metal catalyst under hydrogen gas. To confirm the safe level of allitol, we conducted a series of safety assessments. From the results of Ames mutagenicity assay using Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, Escherichia coli strain WP2uvrA, and an in vitro chromosomal aberration test on cultured Chinese hamster cells, allitol did not show any significant genotoxic effect. No significant effects on general condition, urinalysis, hematology, physiology, histopathology, or at necropsy were observed at a dose of 1500 mg/kg body weight of allitol in the acute and 90-day subchronic oral-toxicity assessments for rats. A further study performed on healthy adult humans showed that the acute use level of allitol for diarrhea was 0.2 g/kg body weight for both men and women. The results of current safety assessment studies suggest that allitol is safe for human consumption.


Assuntos
Aberrações Cromossômicas , Escherichia coli , Masculino , Cricetinae , Ratos , Humanos , Feminino , Animais , Ratos Sprague-Dawley , Testes de Mutagenicidade/métodos , Cricetulus , Escherichia coli/genética , Peso Corporal , Ingestão de Alimentos
5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743212

RESUMO

D-allose is a rare sugar that has been reported to up-regulate thioredoxin-interacting protein (TXNIP) expression and affect the production of intracellular reactive oxygen species (ROS). However, the antitumor effect of D-allose is unknown. This study aimed to determine whether orally administered D-allose could be a candidate drug against bladder cancer (BC). To this end, BC cell lines were treated with varying concentrations of D-allose (10, 25, and 50 mM). Cell viability and intracellular ROS levels were assessed using cell viability assay and flow cytometry. TXNIP expression was evaluated using Western blotting. The antitumor effect of orally administered D-allose was assessed using a xenograft mouse model. D-allose reduced cell viability and induced intracellular ROS production in BC cells. Moreover, D-allose stimulated TXNIP expression in a dose-dependent manner. Co-treatment of D-allose and the antioxidant L-glutathione canceled the D-allose-induced reduction in cell viability and intracellular ROS elevation. Furthermore, oral administration of D-allose inhibited tumor growth without adverse effects (p < 0.05). Histopathological findings in tumor tissues showed that D-allose decreased the nuclear fission rate from 4.1 to 1.1% (p = 0.004). Oral administration of D-allose suppressed BC growth in a preclinical mouse model, possibly through up-regulation of TXNIP expression followed by an increase in intracellular ROS. Therefore, D-allose is a potential therapeutic compound for the treatment of BC.


Assuntos
Açúcares , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Camundongos , Espécies Reativas de Oxigênio , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
Biochem Biophys Res Commun ; 575: 85-89, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461440

RESUMO

Some rare sugars can be potently medicinal, such as l-gulose. In this study, we present a novel alditol oxidase (fAldOx) from the soil fungus Penicillium sp. KU-1, and its application for the effective production of l-gulose. To the best of our knowledge, this is the first report of a successful direct conversion of d-sorbitol to l-gulose. We further purified it to homogeneity with a ∼108-fold purification and an overall yield of 3.26%, and also determined the effectors of fAldOx. The enzyme possessed broad substrate specificity for alditols such as erythritol (kcat/KM, 355 m-1 s-1), thus implying that the effective production of multiple rare sugars for medicinal applications may be possible.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Fúngicas/metabolismo , Hexoses/química , Penicillium/enzimologia , Sorbitol/metabolismo , Álcoois Açúcares/metabolismo , Açúcares/química , Oxirredutases do Álcool/química , Bioengenharia , Proteínas Fúngicas/química , Hexoses/metabolismo , Especificidade por Substrato , Açúcares/metabolismo
7.
Biosci Biotechnol Biochem ; 85(8): 1915-1918, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124745

RESUMO

We found that l-gulose, a rare sugar, was produced from d-sorbitol efficiently, using a wheat-bran culture extract of the fungus Penicillium sp. KU-1 isolated from soil. The culture extract showed enzyme activity for the oxidation of d-sorbitol to produce l-gulose; a high production yield of approximately 94% was achieved.


Assuntos
Fibras na Dieta/metabolismo , Hexoses/biossíntese , Penicillium/metabolismo , Meios de Cultura , Fermentação , Sorbitol/metabolismo
8.
Bioorg Med Chem Lett ; 29(17): 2483-2486, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345631

RESUMO

The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI50) concentration by 1d-d-Alu was estimated to be 5.4 mM, which is approximately 10 times lower than that of d-allulose (52.7 mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5 mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Frutose/química , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Animais , Tamanho Corporal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Desoxiaçúcares/química , Desoxiaçúcares/farmacologia , Desoxiglucose/farmacologia , Sinergismo Farmacológico , Frutose/farmacologia , Ribose/farmacologia , Estereoisomerismo
9.
Molecules ; 24(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635397

RESUMO

A practical synthesis of the very rare sugar d-idose and the stable building blocks for d-idose, d-iduronic, and d-idonic acids from ido-heptonic acid requires only isopropylidene protection, Shing silica gel-supported periodate cleavage of the C6-C7 bond of the heptonic acid, and selective reduction of C1 and/or C6. d-Idose is the most unstable of all the aldohexoses and a stable precursor which be stored and then converted under very mild conditions into d-idose is easily prepared.


Assuntos
Hexoses/síntese química , Ácido Idurônico/síntese química , Açúcares Ácidos/síntese química , Configuração de Carboidratos , Glucose/química , Heptoses/química , Hexoses/química , Ácido Idurônico/química , Estrutura Molecular , Açúcares Ácidos/química
10.
Biochem Biophys Res Commun ; 493(4): 1528-1533, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965946

RESUMO

Dietary restriction (DR) is an effective intervention known to increase lifespan in a wide variety of organisms. DR also delays the onset of aging-associated diseases. DR mimetics, compounds that can mimic the effects of DR, have been intensively explored. d-Allulose (d-Alu), the C3-epimer of d-fructose, is a rare sugar that has various health benefits, including anti-hyperglycemia and anti-obesity effects. Here, we report that d-Alu increased the lifespan of Caenorhabditis elegans both under monoxenic and axenic culture conditions. d-Alu did not further extend the lifespan of the long-lived DR model eat-2 mutant, strongly indicating that the effect is related to DR. However, d-Alu did not reduce the food intake of wild-type C. elegans. To explore the mechanisms of the d-Alu longevity effect, we examined the lifespan of d-Alu-treated mutants deficient for nutrient sensing pathway-related genes daf-16, sir-2.1, aak-2, and skn-1. As a result, d-Alu increased the lifespan of the daf-16, sir-2.1, and skn-1 mutants, but not the aak-2 mutant, indicating that the lifespan extension was dependent on the energy sensor, AMP-activated protein kinase (AMPK). d-Alu also enhanced the mRNA expression and enzyme activities of superoxide dismutase (SOD) and catalase. From these findings, we conclude that d-Alu extends lifespan by increasing oxidative stress resistance through a DR mechanism, making it a candidate DR mimetic.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Restrição Calórica/métodos , Frutose/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catalase/genética , Catalase/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Frutose/química , Genes de Helmintos , Longevidade/efeitos dos fármacos , Longevidade/genética , Longevidade/fisiologia , Mutação , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Estereoisomerismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Chemistry ; 22(35): 12557-65, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27439720

RESUMO

In the search for alternative non-metabolizable inducers in the l-rhamnose promoter system, the synthesis of fifteen 6-deoxyhexoses from l-rhamnose demonstrates the value of synergy between biotechnology and chemistry. The readily available 2,3-acetonide of rhamnonolactone allows inversion of configuration at C4 and/or C5 of rhamnose to give 6-deoxy-d-allose, 6-deoxy-d-gulose and 6-deoxy-l-talose. Highly crystalline 3,5-benzylidene rhamnonolactone gives easy access to l-quinovose (6-deoxy-l-glucose), l-olivose and rhamnose analogue with C2 azido, amino and acetamido substituents. Electrophilic fluorination of rhamnal gives a mixture of 2-deoxy-2-fluoro-l-rhamnose and 2-deoxy-2-fluoro-l-quinovose. Biotechnology provides access to 6-deoxy-l-altrose and 1-deoxy-l-fructose.


Assuntos
Desoxiaçúcares/química , Desoxiglucose/análogos & derivados , Frutose/química , Glucose/química , Hexoses/química , Ramnose/química , Biotecnologia , Desoxiglucose/química , Óperon
12.
Bioorg Med Chem Lett ; 26(3): 726-729, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26791015

RESUMO

Biological activities of unusual monosaccharides (rare sugars) have largely remained unstudied until recently. We compared the growth inhibitory effects of aldohexose stereoisomers against the animal model Caenorhabditis elegans cultured in monoxenic conditions with Escherichia coli as food. Among these stereoisomers, the rare sugar D-arabinose (D-Ara) showed particularly strong growth inhibition. The IC50 value for D-Ara was estimated to be 7.5 mM, which surpassed that of the potent glycolytic inhibitor 2-deoxy-D-glucose (19.5 mM) used as a positive control. The inhibitory effect of D-Ara was also observed in animals cultured in axenic conditions using a chemically defined medium; this excluded the possible influence of E. coli. To our knowledge, this is the first report of biological activity of D-Ara. The D-Ara-induced inhibition was recovered by adding either D-ribose or D-fructose, but not D-glucose. These findings suggest that the inhibition could be induced by multiple mechanisms, for example, disturbance of D-ribose and D-fructose metabolism.


Assuntos
Arabinose/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Monossacarídeos/química , Monossacarídeos/farmacologia , Animais , Arabinose/química , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Estereoisomerismo
13.
J Pharmacol Sci ; 131(2): 126-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27262904

RESUMO

PURPOSE: To determine the therapeutic efficacy of a novel rare sugar, l-psicose, for the treatment of HSV-1 induced herpetic stromal keratitis (HSK) in a mouse eye model. METHODS: One rare sugar l-psicose was assayed for HSV-1 inhibition of in vitro virus adsorption. The IC50 and IC90 values of l-psicose were determined using plaque reduction assay (PRA) in CV-1 cell. Female Balb/c mice were corneally infected with HSV-1, strain KOS-GFP; A topical eye drop treatment of l-psicose was started 24 h after infection and continued four times daily for ten consecutive days. The severity of HSK was monitored by slit lamp examination in a masked fashion and Infectious HSV-1 shedding was determined by PRA. RESULTS: l-psicose was found to have anti-viral activity in vitro at an IC50 dose of 99.5 mM and an IC90 dose of 160 mM. Topical eye drop treatment with 200 mM l-psicose in PBS solution significantly reduced the severity of HSK compared to the mock treatment group. The in vivo mouse ocular model results of l-psicose therapy correlated with accelerated clearance of virus from eye swabs. CONCLUSION: The results suggest that topical treatment with rare sugar l-psicose has efficacy against HSK through inhibition of HSV-1.


Assuntos
Antivirais/uso terapêutico , Frutose/uso terapêutico , Ceratite Herpética/tratamento farmacológico , Administração Tópica , Animais , Antivirais/administração & dosagem , Modelos Animais de Doenças , Olho/efeitos dos fármacos , Olho/virologia , Feminino , Frutose/administração & dosagem , Herpesvirus Humano 1 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
Appl Microbiol Biotechnol ; 100(24): 10403-10415, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27368739

RESUMO

Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.


Assuntos
Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
15.
Biosci Biotechnol Biochem ; 80(6): 1058-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27022778

RESUMO

We compared the growth inhibitory effects of all aldohexose stereoisomers against the model animal Caenorhabditis elegans. Among the tested compounds, the rare sugars d-allose (d-All), d-talose (d-Tal), and l-idose (l-Ido) showed considerable growth inhibition under both monoxenic and axenic culture conditions. 6-Deoxy-d-All had no effect on growth, which suggests that C6-phosphorylation by hexokinase is essential for inhibition by d-All.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Glucose/farmacologia , Hexoses/farmacologia , Animais , Anti-Helmínticos/química , Cultura Axênica , Caenorhabditis elegans/crescimento & desenvolvimento , Glucose/química , Hexoquinase/metabolismo , Hexoses/química , Fosforilação , Relação Estrutura-Atividade
16.
Acta Med Okayama ; 69(2): 105-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25899632

RESUMO

We examined and compared the inhibitory effects of D-tagatose on the growth, acid production, and water-insoluble glucan synthesis of GS5, a bacterial strain of Streptococcus mutans, with those of xylitol, D-psicose, L-psicose and L-tagatose. GS5 was cultured for 12h in a medium containing 10% (w/v) of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose, and the inhibitory effect of GS5 growth was assessed. Each sugar showed different inhibitory effects on GS5. Both D-tagatose and xylitol significantly inhibited the acid production and water-insoluble glucan synthesis of GS5 in the presence of 1% (w/v) sucrose. However, the inhibitory effect of acid production by D-tagatose was significantly stronger than that of xylitol in presence of sucrose.


Assuntos
Ácidos/metabolismo , Glucanos/metabolismo , Hexoses/farmacologia , Streptococcus mutans/classificação , Streptococcus mutans/metabolismo , Sacarose/farmacologia , Frutose/farmacologia , Concentração de Íons de Hidrogênio , Quelantes de Ferro/farmacologia , Técnicas Microbiológicas , Streptococcus mutans/crescimento & desenvolvimento , Xilitol/farmacologia
17.
Angew Chem Int Ed Engl ; 53(4): 1160-2, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24310928

RESUMO

The scarcity and expense of access to L-sugars and other rare sugars have prevented the exploitation of their biological potential; for example D-psicose, only recently available, has been recognized as an important new food. Here we give the definitive and cheap synthesis of 99.4% pure L-glucose from D-glucose which requires purification of neither intermediates nor final product other than extraction into and removal of solvents; a simple crystallization will raise the purity to >99.8%.


Assuntos
Glucose/química , Ácido Glucurônico/síntese química , Ácido Glucurônico/química , Conformação Molecular
18.
Planta ; 237(5): 1379-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397192

RESUMO

We previously reported that a rare sugar D-allose, which is the D-glucose epimer at C3, inhibits the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half seeds in rice (Fukumoto et al. 2011). D-Allose suppresses expressions of gibberellin-responsive genes downstream of SLR1 protein in the gibberellin-signaling through hexokinase (HXK)-dependent pathway. In this study, we discovered that D-allose induced expression of ABA-related genes including OsNCED1-3 and OsABA8ox1-3 in rice. Interestingly, D-allose also up-regulated expression of OsABF1, encoding a conserved bZIP transcription factor in ABA signaling, in rice. The D-allose-induced expression of OsABF1 was diminished by a hexokinase inhibitor, D-mannoheptulose (MNH). Consistently, D-allose also inhibited Arabidopsis growth, but failed to trigger growth retardation in the glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1. D-Allose activated AtABI5 expression in transgenic gin2 over-expressing wild-type AtHXK1 but not in gin2 over-expressing the catalytic mutant AtHXK1(S177A), indicating that the D-allose phosphorylation by HXK to D-allose 6-phosphate (A6P) is the first step for the up-regulation of AtABI5 gene expression as well as D-allose-induced growth inhibition. Moreover, overexpression of OsABF1 showed increased sensitivity to D-allose in rice. These findings indicated that the phosphorylation of D-allose at C6 by hexokinase is essential and OsABF1 is involved in the signal transduction for D-allose-induced growth inhibition.


Assuntos
Glucose/metabolismo , Glucose/farmacologia , Hexoquinase/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hexoquinase/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fosforilação , Proteínas de Plantas/genética
19.
J Exp Bot ; 64(16): 4939-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014866

RESUMO

Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.


Assuntos
Glucose/imunologia , Oryza/genética , Espécies Reativas de Oxigênio/imunologia , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Xanthomonas/fisiologia
20.
J Org Chem ; 78(7): 3208-21, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23458237

RESUMO

A general and efficient method has been developed for the synthesis of sugar-derived azepane nitrones starting from aldohexoses, with an intramolecular condensation of aldehyde and hydroxylamine as the key step. Through this strategy, each aldohexose produced a pair of azepane nitrones, which are precursors of various azepane iminosugars.


Assuntos
Carboidratos/química , Óxidos de Nitrogênio/síntese química , Estrutura Molecular , Óxidos de Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA