Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569732

RESUMO

Bronchopulmonary dysplasia (BPD), caused by hyperoxia in newborns and infants, results in lung damage and abnormal pulmonary function. However, the current treatments for BPD are steroidal and pharmacological therapies, which cause neurodevelopmental impairment. Treatment with umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) is an efficient alternative approach. To prevent pulmonary inflammation in BPD, this study investigated the hypothesis that a key regulator was secreted by MSCs to polarize inflammatory macrophages into anti-inflammatory macrophages at inflammation sites. Lipopolysaccharide-induced macrophages co-cultured with MSCs secreted low levels of the inflammatory cytokines, IL-8 and IL-6, but high levels of the anti-inflammatory cytokine, IL-10. Silencing decorin in MSCs suppressed the expression of CD44, which mediates anti-inflammatory activity in macrophages. The effects of MSCs were examined in a rat model of hyperoxic lung damage. Macrophage polarization differed depending on the levels of decorin secreted by MSCs. Moreover, intratracheal injection of decorin-silenced MSCs or MSCs secreting low levels of decorin confirmed impaired alveolarization of damaged lung tissues by down-regulation of decorin. In tissues, a decrease in the anti-inflammatory macrophage marker, CD163, was observed via CD44. Thus, we identified decorin as a key paracrine factor, inducing macrophage polarization via CD44, a master immunoregulator in mesenchymal stem cells.


Assuntos
Decorina/biossíntese , Sangue Fetal/citologia , Receptores de Hialuronatos/sangue , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Hiperóxia/complicações , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/terapia , Ratos
2.
Stem Cells ; 33(11): 3291-303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235673

RESUMO

Previous studies have shown that mesenchymal stem cell (MSC)-based therapies have varying efficacies for the treatment of various diseases, including cartilage defects. In this study, we demonstrated that the chondrogenic differentiation potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) obtained from different individual donors varies, and we investigated the molecular basis for this variation. Microarray gene expression analysis identified thrombospondin-2 (TSP2) as a candidate gene underlying the interindividual variation in the chondrogenic differentiation potential of hUCB-MSCs. To assess the association between TSP-2 and the differentiation potential, we evaluated chondrogenic differentiation of hUCB-MSCs treated with TSP2 siRNA. In addition, we studied the effect of supplementing exogenous recombinant TSP-2 on TSP2 siRNA-treated hUCB-MSCs. We found that TSP-2 autocrinally promoted chondrogenic differentiation of hUCB-MSCs via the Notch signaling pathway, which was confirmed in MSCs from other sources such as bone marrow and adipose tissue. Interestingly, we observed that TSP-2 attenuated hypertrophy, which inevitably occurs during chondrogenic differentiation of hUCB-MSCs. Our findings indicated that the variable chondrogenic differentiation potential of MSCs obtained from different donors is influenced by the TSP-2 level in the differentiating cells. Thus, the TSP-2 level can be used as a marker to select MSCs with superior chondrogenic differentiation potential for use in cartilage regeneration therapy.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Sangue Fetal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Células Cultivadas , Humanos , Hipertrofia , Recém-Nascido
3.
Am J Physiol Renal Physiol ; 307(10): F1149-61, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143451

RESUMO

Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) have been studied in several models of immune-mediated disease because of their unique immunomodulatory properties. We hypothesized that HUCB-MSCs could suppress the inflammatory response in postischemic kidneys and attenuate early renal injury. In 8- to 10-wk-old male C57BL/6 mice, bilateral ischemia-reperfusion injury (IRI) surgery was performed, and 1 × 10(6) HUCB-MSCs were injected intraperitoneally 24 h before surgery and during reperfusion. Renal functional and histological changes, HUCB-MSC trafficking, leukocyte infiltration, and cytokine expression were analyzed. Renal functional decline and tubular injury after IRI were attenuated by HUCB-MSC treatment. PKH-26-labeled HUCB-MSCs trafficked into the postischemic kidney. Although numbers of CD45-positive leukocytes in the postischemic kidney were comparable between groups, the expression of interferon-γ in the postischemic kidney was suppressed by HUCB-MSC treatment. The rapid decrease in intrarenal VEGF after IRI was markedly mitigated by HUCB-MSC treatment. In inflammatory conditions simulated in a cell culture experiment, VEGF secretion from HUCB-MSCs was substantially enhanced. VEGF inhibitor abolished the renoprotective effect of HUCB-MSCs after IRI. Flow cytometry analysis revealed the decreased infiltration of natural killer T cells and increased number of regulatory T cells in postischemic kidneys. In addition, these effects of HUCB-MSCs on kidney infiltrating mononuclear cells after IRI were attenuated by VEGF inhibitor. HUCB-MSCs attenuated renal injury in mice in the early injury phase after IRI, mainly by humoral effects and secretion of VEGF. Our results suggest a promising role for HUCB-MSCs in the treatment of renal IRI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Animais , Humanos , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Linfócitos T/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Biochem Biophys Res Commun ; 446(4): 983-9, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24657442

RESUMO

Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore "immunologically safe" for use in allogeneic clinical applications.


Assuntos
Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Animais , Antígenos CD34/análise , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos SCID , Fator de Necrose Tumoral alfa/imunologia
5.
Stem Cells ; 31(10): 2136-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23843355

RESUMO

Increasing evidence indicates that the secretome of mesenchymal stem cells (MSCs) has therapeutic potential for the treatment of various diseases, including cartilage disorders. However, the paracrine mechanisms underlying cartilage repair by MSCs are poorly understood. Here, we show that human umbilical cord blood-derived MSCs (hUCB-MSCs) promoted differentiation of chondroprogenitor cells by paracrine action. This paracrine effect of hUCB-MSCs on chondroprogenitor cells was increased by treatment with synovial fluid (SF) obtained from osteoarthritis (OA) patients but was decreased by SF of fracture patients, compared to that of an untreated group. To identify paracrine factors underlying the chondrogenic effect of hUCB-MSCs, the secretomes of hUCB-MSCs stimulated by OA SF or fracture SF were analyzed using a biotin label-based antibody array. Among the proteins increased in response to these two kinds of SF, thrombospondin-2 (TSP-2) was specifically increased in only OA SF-treated hUCB-MSCs. In order to determine the role of TSP-2, exogenous TSP-2 was added to a micromass culture of chondroprogenitor cells. We found that TSP-2 had chondrogenic effects on chondroprogenitor cells via PKCα, ERK, p38/MAPK, and Notch signaling pathways. Knockdown of TSP-2 expression on hUCB-MSCs using small interfering RNA abolished the chondrogenic effects of hUCB-MSCs on chondroprogenitor cells. In parallel with in vitro analysis, the cartilage regenerating effect of hUCB-MSCs and TSP-2 was also demonstrated using a rabbit full-thickness osteochondral-defect model. Our findings suggested that hUCB-MSCs can stimulate the differentiation of locally presented endogenous chondroprogenitor cells by TSP-2, which finally leads to cartilage regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Adulto , Idoso , Animais , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Coelhos , Regeneração , Medicina Regenerativa , Líquido Sinovial/fisiologia , Trombospondinas/fisiologia , Trombospondinas/uso terapêutico
6.
ACS Nano ; 18(11): 8546-8554, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456657

RESUMO

Monoclinic semiconducting ß-Ga2O3 has drawn attention, particularly because its thin film could be achieved via mechanical exfoliation from bulk crystals, which is analogous to van der Waals materials' behavior. For the transistor devices with exfoliated ß-Ga2O3, the channel direction becomes [010] for in-plane electron transport, which changes to vertical [100] near the source/drain (S/D) contact. Hence, anisotropic transport behavior is certainly worth to study but rarely reported. Here we achieve the vertical [100] direction electron mobility of 4.18 cm2/(V s) from Pt/ß-Ga2O3 Schottky diodes with various thickness via radio frequency-transmission line method (RF-TLM), which is recently developed. The specific contact resistivity (ρc) could also be estimated from RF-TLM, to be 4.72 × 10-5 Ω cm2, which is quite similar to the value (5.25 × 10-5 Ω cm2) from conventional TLM proving the validity of RF-TLM. We also fabricate metal-semiconductor field-effect transistors (MESFETs) to study anisotropic transport behavior and contact resistance (RC). RC-free [010] in-plane mobility appears as high as maximum ∼67 cm2/(V s), extracted from total resistance in MESFETs.

7.
J Pediatr Hematol Oncol ; 35(6): e229-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23426002

RESUMO

Despite advantages of cord blood (CB) cells, such as their high capacity for proliferation and low immunogenicity, CB transplantation is also associated with delayed neutrophil and platelet recovery relative to bone marrow transplantation. These limitations arise from the reduced abundances of primitive hematopoietic stem cells expressing adhesion molecules in CB relative to bone marrow. To address this limitation, we evaluated whether human parathyroid hormone (hPTH) could increase the number of primitive hematopoietic stem cells with adhesion molecules in cryopreserved CB. When cryopreserved CB cells were cocultured with differentiated osteoblasts in the presence of hPTH, numbers of CD34CD38 cells increased 4-fold after 7 days. Exposure to hPTH promoted clonogenic cell expansion and significantly increased the expression of adhesion molecules, such as CD44 (a cell surface glycoprotein) and VLA-4 (α4 integrin) in CD34 cells. This result shows that short-term coculture of cryopreserved CB with differentiated osteoblasts in the presence of hPTH may improve the rate of engraftment of CD34 cells through increasing the abundances of primitive cells bearing adhesion molecules.


Assuntos
Moléculas de Adesão Celular/biossíntese , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/metabolismo , Osteoblastos/citologia , Hormônio Paratireóideo/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Criopreservação , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Hormônio Paratireóideo/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Int J Mol Sci ; 14(9): 17986-8001, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24005862

RESUMO

Various source-derived mesenchymal stem cells (MSCs) have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM), adipose tissue (AT), and umbilical cord blood-derived MSCs (UCB-MSCs) for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS)-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α), IL-6, and IL-8 via angiopoietin-1 (Ang-1). Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA), we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Angiopoietina-1/metabolismo , Western Blotting , Criança , Humanos , Imunofenotipagem , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Adulto Jovem
9.
Adv Mater ; 35(22): e2300478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940281

RESUMO

Negative-capacitance field-effect transistors (NC-FETs) have gathered enormous interest as a way to reduce subthreshold swing (SS) and overcome the issue of power dissipation in modern integrated circuits. For stable NC behavior at low operating voltages, the development of ultrathin ferroelectrics (FE), which are compatible with the industrial process, is of great interest. Here, a new scalable ultrathin ferroelectric polymer layer is developed based on trichloromethyl (CCl3 )-terminated poly(vinylidene difluoride-co-trifloroethylene) (P(VDF-TrFE)) to achieve the state-of-the-art performance of NC-FETs. The crystalline phase of 5-10 nm ultrathin P(VDF-TrFE) is prepared on AlOX by a newly developed brush method, which enables an FE/dielectric (DE) bilayer. FE/DE thickness ratios are then systematically tuned at ease to achieve ideal capacitance matching. NC-FETs with optimized FE/DE thickness at a thickness limit demonstrate hysteresis-free operation with an SS of 28 mV dec-1 at ≈1.5 V, which competes with the best reports. This P(VDF-TrFE)-brush layer can be broadly adapted to NC-FETs, opening an exciting avenue for low-power devices.

10.
J Pediatr Hematol Oncol ; 34(7): 491-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23007338

RESUMO

Osteoblasts, which are derived from pluripotent mesenchymal stem cells (MSCs), play an important role in hematopoiesis. Human parathyroid hormone (hPTH) induces osteoblasts to produce many factors that are essential to hematopoietic stem cells. However, little is known about the impact of hPTH on MSCs to enhance hematopoiesis. We determined the optimal dose of hPTH that was necessary in vitro for increased osteoblast function. In addition, we compared MSC and osteoblast function to explore the role of hPTH in hematopoiesis. The mRNA expression levels of granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 6, stromal cell-derived factor 1, insulin-like growth factor 1 (IGF-1), IGF-2, insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-2, and IGFBP-3 were comparable in osteoblasts and human cord blood-derived MSCs. However, G-CSF, GM-CSF, IGF-2, IGFBP-1, IGFBP-2, and IGFBP-3 expression levels in osteoblasts were markedly increased after treatment with 50 or 100 nM of hPTH. In conclusion, hPTH does not affect the ability of MSCs to differentiate into osteoblasts. In addition, hPTH may enhance hematopoiesis by activating the IGF system (IGF-2, IGFBP-1, IGFBP-2, and IGFBP-3) and hematopoietic growth factors (G-CSF and GM-CSF) in osteoblasts, but not in MSCs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , RNA Mensageiro/análise , Somatomedinas/genética , Fosfatase Alcalina/genética , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo
11.
Cell Mol Life Sci ; 67(11): 1845-58, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20165901

RESUMO

GD2 ganglioside has been identified as a key determinant of bone marrow-derived mesenchymal stem cells (BM-MSCs). Here, we characterized GD2 ganglioside expression and its implications in umbilical cord blood-derived MSCs (UCB-MSCs). Using immune-selection analysis, we showed that both GD2-positive and GD2-negative UCB-MSCs expressed general stem cell markers and possessed mesodermal lineage differentiation potential. Although the fraction of GD2-expressing cells was lower in UCB-MSC than in BM-MSC populations, inhibition of GD2 synthesis in UCB-MSCs suppressed neuronal differentiation and down-regulated basic helix-loop-helix (bHLH) transcription factors, which are involved in early stage neuronal differentiation. In addition, the levels of bHLH factors in neuronally induced UCB-MSCs were significantly higher in GD2-positive than GD2-negative cells. Our data demonstrate that GD2 ganglioside expression is associated with regulation of bHLH factors and identify neurogenic-capable UCB-MSCs, providing new insights into the potential clinical applications of MSC-based therapy.


Assuntos
Sangue Fetal/citologia , Sangue Fetal/metabolismo , Gangliosídeos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Primers do DNA/genética , Humanos , Recém-Nascido , Transplante de Células-Tronco Mesenquimais , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Neurogênese , RNA Interferente Pequeno/genética
12.
Sci Rep ; 11(1): 6810, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762711

RESUMO

TiO2 is the most widely used material for the electron transport layers (ETLs) because it is characterized by proper band alignment with light absorbers, adequate optical transmittance, and high electron mobility. There are two thermodynamically stable crystal phases of TiO2: anatase and rutile. However, understanding which phase is more effective as the ETL is still required. In this paper, we demonstrate the different effects of using epitaxial anatase TiO2 and epitaxial rutile TiO2 (both grown using pulsed laser deposition) as the ETL material on the electrical and optical properties. Epitaxial Nb-doped TiO2 layers were used as the common electrode material for the both epitaxial ETLs for which the crystalline structural analysis revealed high crystalline qualities and good coherency for both phases. By analyzing the recombination kinetics, the anatase phase shows a preferable performance in comparison with the rutile phase, although both epitaxial phases show remarkably reduced extrinsic recombination properties, such as trap-assisted recombination. This study demonstrates not only a better electron transporting performance of anatase phase but also reduced extrinsic recombination through epitaxy growth.

13.
Adv Mater ; 33(38): e2103079, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338384

RESUMO

Highly crystalline 2D/3D-mixed p-transition metal dichalcogenide (TMD)/n-Ga2 O3 heterojunction devices are fabricated by mechanical exfoliation of each p- and n-type material. N-type ß-Ga2 O3 and p-type TMD separately play as a channel for junction field effect transistors (JFETs) with each type of carriers as well as materials for a heterojunction PN diode. The work thus mainly focuses on such ambipolar channel transistors with two different types of channel in a single device architecture. For more extended applications, the transparency of high energy band gap ß-Ga2 O3 (Eg  ≈ 4.8 eV) is taken advantage of, firstly to measure the electrical energy gap of p-TMDs receiving visible or near infrared (NIR) photons through the ß-Ga2 O3 . Next, the p-TMD/n-Ga2 O3 JFETs are put to high speed photo-sensing which is achieved from the p-TMD channel under reverse bias voltages on n-Ga2 O3 . The photo-switching cutoff frequency appears to be ≈16 and 29 kHz for visible red and NIR illuminations, respectively, on the basis of -3 dB photoelectric power loss. Such a high switching speed of the JFET is attributed to the fast transport of photo-carriers in TMD channels. The 2D/3D-mixed ambipolar channel JFETs and their photo-sensing applications are regarded novel, promising, and practically easy to achieve.

14.
Nat Biomed Eng ; 5(8): 847-863, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34385693

RESUMO

The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.


Assuntos
AVC Isquêmico/terapia , Dispositivos Lab-On-A-Chip , Transplante de Células-Tronco , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica/química , Barreira Hematoencefálica/metabolismo , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Microglia/citologia , Microglia/metabolismo , Microvasos/citologia , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
15.
Stem Cells Int ; 2021: 5582792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936211

RESUMO

Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro (p < 0.01), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.

16.
Cells ; 10(1)2021 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401590

RESUMO

In order to provide a sufficient number of cells for clinical use, mesenchymal stem cells (MSCs) must be cultured for long-term expansion, which inevitably triggers cellular senescence. Although the small size of MSCs is known as a critical determinant of their fate, the main regulators of stem cell senescence and the underlying signaling have not been addressed. Umbilical cord blood-derived MSCs (UCB-MSCs) were obtained using size-isolation methods and then cultured with control or small cells to investigate the major factors that modulate MSC senescence. Cytokine array data suggested that the secretion of interukin-8 (IL-8) or growth-regulated oncogene-alpha (GROa) by senescent cells was markedly inhibited during incubation of small cells along with suppression of cognate receptor (C-X-C motif chemokine receptor2, CXCR2) via blockade of the autocrine/paracrine positive loop. Moreover, signaling via toll-like receptor 2 (TLR2) and TLR5, both pattern recognition receptors, drove cellular senescence of MSCs, but was inhibited in small cells. The activation of TLRs (2 and 5) through ligand treatment induced a senescent phenotype in small cells. Collectively, our data suggest that small cell from UCB-MSCs exhibit delayed cellular senescence by inhibiting the process of TLR signaling-mediated senescence-associated secretory phenotype (SASP) activation.


Assuntos
Tamanho Celular , Senescência Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 5 Toll-Like/metabolismo , Comunicação Autócrina , Quimiocina CXCL1/metabolismo , Sangue Fetal/citologia , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Fenótipo , Receptores de Interleucina-8B/metabolismo
17.
J Clin Med ; 10(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466868

RESUMO

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.

18.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572070

RESUMO

Mesenchymal stem cells (MSCs) are accessible, abundantly available, and capable of regenerating; they have the potential to be developed as therapeutic agents for diseases. However, concerns remain in their further application. In this study, we developed a SMall cell+Ultra Potent+Scale UP cell (SMUP-Cell) platform to improve whole-cell processing, including manufacturing bioreactors and xeno-free solutions for commercialization. To confirm the superiority of SMUP-Cell improvements, we demonstrated that a molecule secreted by SMUP-Cells is capable of polarizing inflammatory macrophages (M1) into their anti-inflammatory phenotype (M2) at the site of injury in a pain-associated osteoarthritis (OA) model. Lipopolysaccharide-stimulated macrophages co-cultured with SMUP-Cells expressed low levels of M1-phenotype markers (CD11b, tumor necrosis factor-α, interleukin-1α, and interleukin-6), but high levels of M2 markers (CD163 and arginase-1). To identify the paracrine action underlying the anti-inflammatory effect of SMUP-Cells, we employed a cytokine array and detected increased levels of pentraxin-related protein-3 (PTX-3). Additionally, PTX-3 mRNA silencing was applied to confirm PTX-3 function. PTX-3 silencing in SMUP-Cells significantly decreased their therapeutic effects against monosodium iodoacetate (MIA)-induced OA. Thus, PTX-3 expression in injected SMUP-Cells, applied as a therapeutic strategy, reduced pain in an OA model.


Assuntos
Proteína C-Reativa/metabolismo , Macrófagos/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Osteócitos/citologia , Dor/prevenção & controle , Componente Amiloide P Sérico/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Injeções Intra-Articulares , Ácido Iodoacético/toxicidade , Ativação de Macrófagos/imunologia , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Osteoartrite/patologia , Dor/etiologia , Dor/metabolismo , Dor/patologia , Ratos , Ratos Sprague-Dawley
19.
Front Cell Dev Biol ; 9: 803645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178399

RESUMO

Mesenchymal stem cells (MSCs) are recognized as potential treatments for multiple degenerative and inflammatory disorders as a number of animal and human studies have indicated their therapeutic effects. There are also several clinically approved medicinal products that are manufactured using these cells. For such large-scale manufacturing requirements, the in vitro expansion of harvested MSCs is essential. Multiple subculturing of MSCs, however, provokes cellular senescence processes which is known to deteriorate the therapeutic efficacy of the cells. Strategies to rejuvenate or selectively remove senescent MSCs are therefore highly desirable for fostering future clinical applications of these cells. In this present study, we investigated gene expression changes related to cellular senescence of MSCs derived from umbilical cord blood and found that CD26, also known as DPP4, is significantly upregulated upon cellular aging. We further observed that the inhibition of CD26 by genetic or pharmacologic means delayed the cellular aging of MSCs with their multiple passaging in culture. Moreover, the sorting and exclusion of CD26-positive MSCs from heterogenous cell population enhanced in vitro cell attachment and reduced senescence-associated cytokine secretion. CD26-negative MSCs also showed superior therapeutic efficacy in mouse lung emphysema model. Our present results collectively suggest CD26 is a potential novel target for the rejuvenation of senescent MSCs for their use in manufacturing MSC-based applications.

20.
World J Stem Cells ; 12(12): 1511-1528, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33505598

RESUMO

Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA