Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905007

RESUMO

MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG4Health is developing OPMs using Helium gas (4He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.


Assuntos
Hélio , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Voluntários Saudáveis , Encéfalo/fisiologia , Campos Magnéticos
2.
Opt Express ; 29(10): 14467-14475, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985169

RESUMO

Optically-pumped magnetometers constitute a valuable tool for imaging biological magnetic signals without cryogenic cooling. Nowadays, numerous developments are being pursued using alkali-based magnetometers, which have demonstrated excellent sensitivities in the spin-exchange relaxation free (SERF) regime that requires heating to >100 °C. In contrast, metastable helium-4 based magnetometers work at any temperature, which allows a direct contact with the scalp, yielding larger signals and a better patient comfort. However former 4He magnetometers displayed large noises of >200 fT/Hz1/2 with 300-Hz bandwidth. We describe here an improved magnetometer reaching a sensitivity better than 50 fT/Hz1/2, nearly the photon shot noise limit, with a bandwidth of 2 kHz. Like other zero-field atomic magnetometers, these magnetometers can be operated in closed-loop architecture reaching several hundredths nT of dynamic range. A small array of 4 magnetometers operating in a closed loop has been tested with a successful correction of the cross-talks.


Assuntos
Técnicas Biossensoriais/instrumentação , Hélio , Magnetometria/instrumentação , Imagem Óptica/instrumentação , Desenho de Equipamento , Fenômenos Ópticos , Fótons , Temperatura
3.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932045

RESUMO

Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations. In this study, we validate the ability of helium-based OPM (4He-OPM) sensors to record epileptic brain activity thanks to simultaneous recordings with intracerebral EEG [stereotactic EEG (SEEG)]. We recorded simultaneous SQUIDs-SEEG and 4He-OPM-SEEG signals in one patient during two sessions. We show that epileptic activities on intracerebral EEG can be recorded by OPMs with a better signal-to noise ratio than classical SQUIDs. The OPM sensors open new venues for the widespread application of magnetoencephalography in the management of epilepsy and other neurologic diseases and fundamental neuroscience.


Assuntos
Epilepsia , Hélio , Humanos , Animais , Magnetoencefalografia , Epilepsia/diagnóstico , Eletroencefalografia , Decapodiformes , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA