Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Brain Res ; 239(3): 881-890, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33420799

RESUMO

Loss of dendritic spines and decline of cognitive function are hallmarks of patients with Alzheimer's disease (AD). Previous studies have shown that AD pathophysiology involves increased expression of a central nervous system-enriched protein tyrosine phosphatase called STEP (STriatal-Enriched protein tyrosine Phosphatase). STEP opposes the development of synaptic strengthening by dephosphorylating substrates, including GluN2B, Pyk2, and ERK1/2. Genetic reduction of STEP as well as pharmacological inhibition of STEP improve cognitive function and hippocampal memory in the 3×Tg-AD mouse model. Here, we show that the improved cognitive function is accompanied by an increase in synaptic connectivity in cell cultures as well as in the triple transgenic AD mouse model, further highlighting the potential of STEP inhibitors as a therapeutic agent.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Cereb Cortex ; 28(10): 3399-3413, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968898

RESUMO

The GABAergic system is regulated by the brain-derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) pathway, but the cell-intrinsic role of TrkB signaling in parvalbumin cortical interneuron development and function is unclear. We performed conditional ablation of the TrkB receptor in parvalbumin-expressing (PV) interneurons to study whether postnatal loss of TrkB in parvalbumin cells affects their survival, connectivity, spontaneous and evoked neuronal activity and behavior. Using in vivo recordings of local field potentials, we found reduced gamma oscillations in the sensory cortex of PVcre+; TrkBF/F conditional knockout mice (TrkB cKO), along with increased firing of putative excitatory neurons. There was a significant downregulation in parvalbumin neuron number in cerebral and cerebellar cortices of TrkB cKO mice. In addition, inhibitory synaptic connections between basket cells and pyramidal neurons were profoundly reduced in the neocortex of TrkB cKO mice and there was a loss of cortical volume. TrkB cKO mice also showed profound hyperactivity, stereotypies, motor deficits and learning/memory defects. Our findings demonstrate that the targeting and/or synapse formation of PV-expressing basket cells with principal excitatory neurons require TrkB signaling in parvalbumin cells. Disruption of this signaling has major consequences for parvalbumin interneuron connectivity, network dynamics, cognitive and motor behavior.


Assuntos
Comportamento Animal , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Interneurônios , Glicoproteínas de Membrana/genética , Neurônios , Proteínas Tirosina Quinases/genética , Animais , Fenômenos Eletrofisiológicos/genética , Potenciais Evocados/fisiologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/psicologia , Glicoproteínas de Membrana/deficiência , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/psicologia , Neocórtex/citologia , Parvalbuminas/biossíntese , Parvalbuminas/genética , Proteínas Tirosina Quinases/deficiência , Células Piramidais , Análise de Sobrevida
3.
Neural Plast ; 2016: 8136925, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190655

RESUMO

Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Humanos , Camundongos , Fosforilação , Transdução de Sinais/fisiologia
5.
Child Adolesc Psychiatr Clin N Am ; 32(4): 655-666, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739626

RESUMO

Gender--once an afterthought despite its significant yet unspoken role in the average American's daily life (public restrooms, clothes shopping, grooming, sports teams)--has become a fraught sociopolitical issue. The concept of gender as a construct, once relegated to the realm of Women's and Gender Studies courses, went mainstream while concurrently, gender reveal parties have experienced a surge in popularity. Meanwhile, youth (and adults) have become increasingly comfortable exploring their gender identities and expression, which has led to an increase in inquiries regarding gender-affirming care--along with an accompanying backlash resulting in an increasing number of states attempting to enact restrictions and bans, effectively turning healthcare for transgender youth into the latest political battlefield. This section will define and provide an overview of common gender- and sexual orientation-related terminology and basic topics in order to establish an understanding for the remainder of the articles in this edition.


Assuntos
Identidade de Gênero , Esportes , Criança , Masculino , Adulto , Animais , Adolescente , Feminino , Humanos , Alfabetização
6.
Neuropharmacology ; 128: 43-53, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28943283

RESUMO

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability, with additional symptoms including attention deficit and hyperactivity, anxiety, impulsivity, and repetitive movements or actions. The majority of FXS cases are attributed to a CGG expansion that leads to transcriptional silencing and diminished expression of fragile X mental retardation protein (FMRP). FMRP, an RNA binding protein, regulates the synthesis of dendritically-translated mRNAs by stalling ribosomal translation. Loss of FMRP leads to increased translation of some of these mRNAs, including the CNS-specific tyrosine phosphatase STEP (STriatal-Enriched protein tyrosine Phosphatase). Genetic reduction of STEP in Fmr1 KO mice have diminished audiogenic seizures and a reversal of social and non-social anxiety-related abnormalities. This study investigates whether a newly discovered STEP inhibitor (TC-2153) could attenuate the behavioral and synaptic abnormalities in Fmr1 KO mice. TC-2153 reversed audiogenic seizure incidences, reduced hyperactivity, normalized anxiety states, and increased sociability in Fmr1 KO mice. Moreover, TC-2153 reduced dendritic spine density and improved synaptic aberrations in Fmr1 KO neuronal cultures as well as in vivo. TC-2153 also reversed the mGluR-mediated exaggerated LTD in brain slices derived from Fmr1 KO mice. These studies suggest that STEP inhibition may have therapeutic benefit in FXS.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Sinapses/patologia , Adaptação Ocular/efeitos dos fármacos , Adaptação Ocular/genética , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Benzotiepinas/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/etiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Hipocampo/ultraestrutura , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA