Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Theor Appl Genet ; 137(3): 61, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411751

RESUMO

KEY MESSAGE: We identified two stable and homologous major QTLs for sucrose content in peanut, and developed breeder-friendly molecular markers for marker-assisted selection breeding. Sucrose content is a crucial quality trait for edible peanuts, and increasing sucrose content is a key breeding objective. However, the genetic basis of sucrose content in peanut remains unclear, and major quantitative trait loci (QTLs) for sucrose content have yet to be identified. In this study, a high-density genetic map was constructed based on whole-genome re-sequencing data from a peanut RIL population. This map consisted of 2,042 bins and 24,142 SNP markers, making it one of the most comprehensive maps to date in terms of marker density. Two major QTLs (qSCA06.2 and qSCB06.2) were identified, explaining 31.41% and 24.13% of the phenotypic variance, respectively. Notably, these two QTLs were located in homologous genomic regions between the A and B subgenomes. The elite allele of qSCA06.2 was exclusive to Valencia-type, while the elite allele of qSCB06.2 existed in other peanut types. Importantly, the distribution of alleles from two homologous QTLs in the RIL population and diverse germplasm accessions consistently demonstrated that only the combination of elite allelic genotypes from both QTLs/genes resulted in a significantly dominant phenotype, accompanied by a substantial increase in sucrose content. The newly developed diagnostic markers for these QTLs were confirmed to be reliable and could facilitate future breeding efforts to enhance sucrose content using marker-assisted selection techniques. Overall, this study highlights the co-regulation of sucrose content by two major homologous QTLs/genes and provides valuable insights into the genetic basis of sucrose in peanuts.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal , Alelos , Sacarose
2.
Theor Appl Genet ; 137(2): 33, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285195

RESUMO

KEY MESSAGE: Three major QTLs qA01, qB04.1 and qB05 for VLCFA content and their corresponding allele-specific markers will benefit peanut low VLCFA breeding, and a candidate gene Arahy.IF1JV3 was predicted. Peanut is a globally significant oilseed crop worldwide, and contains a high content (20%) of saturated fatty acid (SFA) in its seeds. As high level SFA intake in human dietary may increase the cardiovascular disease risk, reducing the SFA content in peanut is crucial for improving its nutritional quality. Half of the SFAs in peanut are very long-chain fatty acids (VLCFA), so reducing the VLCFA content is a feasible strategy to decrease the total SFA content. Luoaowan with extremely low VLCFA (4.80%) was crossed with Jihua16 (8.00%) to construct an F2:4 population. Three major QTLs including qA01, qB04.1 and qB05 for VLCFA content were detected with 4.43 ~ 14.32% phenotypic variation explained through linkage mapping. Meanwhile, three genomic regions on chromosomes B03, B04 and B05 were identified via BSA-seq approach. Two co-localized intervals on chromosomes B04 (100.10 ~ 103.97 Mb) and B05 (6.39 ~ 10.90 Mb) were identified. With markers developed based on SNP/InDel variations in qA01 between the two parents, the remaining interval was refined to 103.58 ~ 111.14 Mb. A candidate gene Arahy.IF1JV3 encoding a ß-ketoacyl-CoA synthase was found in qA01, and its expression level in Luoaowan was significantly lower than that in Jihua16. Allele-specific markers targeting qA01, qB04.1 and qB05 were developed and validated in F4 population, and an elite line with high oleic, low VLCFA (5.05%) and low SFA (11.48%) contents was selected. This study initially revealed the genetic mechanism of VLCFA content, built a marker-assisted selection system for low VLCFA breeding, and provided an effective method to decrease the SFA content in peanut.


Assuntos
Arachis , Melhoramento Vegetal , Humanos , Arachis/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Ácidos Graxos
3.
BMC Plant Biol ; 23(1): 626, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062387

RESUMO

BACKGROUND: Glycosylation, catalyzed by UDP-glycosyltransferase (UGT), was important for enhancing solubility, bioactivity, and diversity of flavonoids. Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. In addition to provide high quality of edible oils and proteins, peanut seeds contain a rich source of flavonoid glycosides that benefit human health. However, information of UGT gene family was quite limited in peanut. RESULTS: In present study, a total of 267 AhUGTs clustered into 15 phylogenetic groups were identified in peanut genome. Group I has greatly expanded to contain the largest number of AhUGT genes. Segmental duplication was the major driving force for AhUGT gene family expansion. Transcriptomic analysis of gene expression profiles in various tissues and under different abiotic stress treatments indicated AhUGTs were involved in peanut growth and abiotic stress response. AhUGT75A (UGT73CG33), located in mitochondria, was characterized as a flavonoid 7-O-UGT by in vitro enzyme assays. The transcript level of AhUGT75A was strongly induced by abiotic stress. Overexpression of AhUGT75A resulted in accumulating less amount of malondialdehyde (MDA) and superoxide, and enhancing tolerance against drought and/or salt stress in transgenic Arabidopsis. These results indicated AhUGT75A played important roles in conferring abiotic stress tolerance through reactive oxygen species scavenging. CONCLUSIONS: Our research only not provides valuable information for functional characterization of UGTs in peanut, but also gives new insights into potential applications in breeding new cultivars with both desirable stress tolerance and health benefits.


Assuntos
Arabidopsis , Arachis , Humanos , Arachis/genética , Glicosiltransferases/genética , Filogenia , Flavonoides , Melhoramento Vegetal , Estresse Fisiológico/genética , Difosfato de Uridina
4.
Plant Dis ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712823

RESUMO

Peanut (Arachis hypogaea L.) is an important oilseed and cash crop cultivated in over 100 countries worldwide. The major producers are China, India and USA (Ding et al. 2022). In September 2022, peanut pods exhibiting black necrotic symptoms on the shell surface were observed in Puyang, Henan Province, China. These black spots often merged to form larger necrotic spots on the shell. Disease incidence was 100% in susceptible varieties. Symptomatic shell pieces were surface sterilized with 75% ethanol for 3 min, rinsed three times with sterile water, and then transferred onto PDA medium supplemented with 25 µg/ml chloramphenicol (Long et al. 2022). Isolation frequency of a fungus with similar-appearing colonies from symptomatic pods was 81.7%. A pure culture of a representative isolate, PYHB, was obtained through single-sporing and maintained on PDA plates at 25℃ in darkness. The colony initially appeared white but turned black within 2 days. The isolate produced dark brown, unicellular chlamydospores, which were arranged in club-shaped chains consisting of two to seven cells. The size of the unicellular chlamydospores varied from 3.34 to 15.27 µm (average:6.81, n = 100) in length and 8.30 to 15.51 µm (average:11.29, n = 100) in width. The endoconidia were hyaline and cylindrical, measuring 7.91-22.94 × 1.69-4.81 µm (average: 12.16 × 3.13, n = 100). Based on morphological characteristics, the isolate was tentatively identified as a Berkeleyomyces sp. (Nel et al. 2018; Long et al. 2022). The ITS region of r-DNA, the ribosomal large subunit (LSU), the minichromosome maintenance complex component 7 (MCM7), and the 60S ribosomal protein RPL10 (60S) genes were amplified using ITS1/ITS4, LR0R/LR5, rouxMCM7-F/rouxMCM7-R and roux60s-F/roux60s-R primers, respectively (White et al. 1990; Vilgalys and Hester 1990; Nakane and Usami 2020). The sequences were deposited in GenBank (ITS: OR053803; LSU: OR053818; MCM7: OR058549; 60S: OR060656). Through BLASTn analysis of the NCBI GenBank database, the generated ITS and LSU sequences showed 100% identity to Berkeleyomyces rouxiae (GenBank MF952418.1 and MF948662.1, respectively) and B. basicola (GenBank MT221585.1 and MH868639.1, respectively). Importantly, the MCM7 and 60S sequences were 100% identical to B. rouxiae (GenBank MF967114.1 and MF967077.1, respectively). Phylogenetic analysis combining ITS, LSU, MCM7, and 60S sequences showed that the isolate PYHB clustered with B. rouxiae. To evaluate pathogenicity, surface-sterilized healthy peanut pods (n = 90) were immersed in a 1×106 spore/ml conidial suspension obtained from isolate PYHB for 5 min and placed in Petri dishes containing moistened cotton at 25°C for 10 days. Pods (n = 90) inoculated with sterile water served as controls. Inoculated pods displayed black necrosis 10 days after inoculation (dai), whereas no symptoms were observed on the control pods at 21 dai. The reisolated pathogen was shown to be identical to the original inoculum through morphological and phylogenetic analysis. Black root rot is a fungal disease caused by Berkeleyomyces spp. (syn. Thielaviopsis spp.) and affects various crops and ornamentals, such as cotton, tobacco, carrot, holly, and pansy (Rahnama et al. 2022). The causal agents B. rouxiae and B. basicola have similar morphological characteristics but can be differentiated through molecular characterization (Nel et al. 2018). To our knowledge, this is the first report of black pod rot in peanut caused by B. rouxiae in China. The finding from this study will contribute to the development of monitoring and management strategies to combat this destructive disease in peanut cultivation.

5.
BMC Plant Biol ; 22(1): 207, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35448951

RESUMO

BACKGROUND: Aflatoxin contamination caused by Aspergillus fungi has been a serious factor affecting food safety of peanut (Arachis hypogaea L.) because aflatoxins are highly harmful for human and animal health. As three mechanisms of resistance to aflatoxin in peanut including shell infection resistance, seed infection resistance and aflatoxin production resistance exist among naturally evolved germplasm stocks, it is highly crucial to pyramid these three resistances for promoting peanut industry development and protecting consumers' health. However, less research effort has been made yet to investigate the differentiation and genetic relationship among the three resistances in diversified peanut germplasm collections. RESULTS: In this study, the Chinese peanut mini-mini core collection selected from a large basic collection was systematically evaluated for the three resistances against A. flavus for the first time. The research revealed a wide variation among the diversified peanut accessions for all the three resistances. Totally, 14 resistant accessions were identified, including three with shell infection resistance, seven with seed infection resistance and five with aflatoxin production resistance. A special accession, Zh.h1312, was identified with both seed infection and aflatoxin production resistance. Among the five botanic types of A. hypogaea, the var. vulgaris (Spanish type) belonging to subspecies fastigiata is the only one which possessed all the three resistances. There was no close correlation between shell infection resistance and other two resistances, while there was a significant positive correlation between seed infection and toxin production resistance. All the three resistances had a significant negative correlation with pod or seed size. A total of 16 SNPs/InDels associated with the three resistances were identified through genome-wide association study (GWAS). Through comparative analysis, Zh.h1312 with seed infection resistance and aflatoxin production resistance was also revealed to possess all the resistance alleles of associated loci for seed infection index and aflatoxin content. CONCLUSIONS: This study provided the first comprehensive understanding of differentiation of aflatoxin resistance in diversified peanut germplasm collection, and would further contribute to the genetic enhancement for resistance to aflatoxin contamination.


Assuntos
Aflatoxinas , Animais , Arachis/genética , Arachis/microbiologia , Aspergillus flavus/genética , China , Estudo de Associação Genômica Ampla
6.
Theor Appl Genet ; 135(5): 1779-1795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262768

RESUMO

KEY MESSAGE: Combining QTL-seq, QTL-mapping and RNA-seq identified a major QTL and candidate genes, which contributed to the development of KASP markers and understanding of molecular mechanisms associated with seed weight in peanut. Seed weight, as an important component of seed yield, is a significant target of peanut breeding. However, relatively little is known about the quantitative trait loci (QTLs) and candidate genes associated with seed weight in peanut. In this study, three major QTLs on chromosomes A05, B02, and B06 were determined by applying the QTL-seq approach in a recombinant inbred line (RIL) population. Based on conventional QTL-mapping, these three QTL regions were successfully narrowed down through newly developed single nucleotide polymorphism (SNP) and simple sequence repeat markers. Among these three QTL regions, qSWB06.3 exhibited stable expression, contributing mainly to phenotypic variance across environments. Furthermore, differentially expressed genes (DEGs) were identified at the three seed developmental stages between the two parents of the RIL population. It was found that the DEGs were widely distributed in the ubiquitin-proteasome pathway, the serine/threonine-protein pathway, signal transduction of hormones and transcription factors. Notably, DEGs at the early stage were mostly involved in regulating cell division, whereas DEGs at the middle and late stages were primarily involved in cell expansion during seed development. The expression patterns of candidate genes related to seed weight in qSWB06.3 were investigated using quantitative real-time PCR. In addition, the allelic diversity of qSWB06.3 was investigated in peanut germplasm accessions. The marker Ah011475 has higher efficiency for discriminating accessions with different seed weights, and it would be useful as a diagnostic marker in marker-assisted breeding. This study provided insights into the genetic and molecular mechanisms of seed weight in peanut.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , RNA-Seq , Sementes/genética
7.
Plant Dis ; 106(10): 2722-2729, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36094427

RESUMO

Peanut stem rot caused by Athelia rolfsii is a serious soilborne disease worldwide and is becoming increasingly important in China. A total of 293 A. rolfsii isolates were collected from four representative peanut producing provinces in northern, central, and southern China. These isolates were assigned to 45 mycelial compatibility groups (MCGs) through pairing testing. The MCG diversity among isolates was greater in the southern sampled provinces compared with the northern provinces. A high level of genetic variability was found among the isolates from Guangdong Province in southern China. Variations were found in mycelial growth rate and sclerotial number, size, and dry weight of isolates sampled from places in different latitudes. Size and dry weight of sclerotia were positively correlated with latitude (P < 0.01), but the number of sclerotia was negatively correlated with latitude (P < 0.01). All tester isolates were pathogenic on peanut but varied in disease index. Inter-simple sequence repeat analysis and unweighted pair-group method with arithmetic average clustering resulted in three distinct clusters that were associated with the geographical location of the collection sites and sclerotial traits but were not associated with virulence of these isolates. These findings imply that genetic diversity, morphological traits, and virulence among A. rolfsii isolates varied in diverse geographical regions in China, and genetic diversity and sclerotial traits might be affected by latitude.


Assuntos
Ascomicetos , Basidiomycota , Arachis , Ascomicetos/genética , Basidiomycota/genética , Doenças das Plantas
8.
BMC Genomics ; 22(1): 276, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863285

RESUMO

BACKGROUND: Stem rot caused by Sclerotium rolfsii is a very important soil-borne disease of peanut. S. rolfsii is a necrotrophic plant pathogenic fungus with an extensive host range and worldwide distribution. It can infect peanut stems, roots, pegs and pods, leading to varied yield losses. S. rolfsii strains GP3 and ZY collected from peanut in different provinces of China exhibited a significant difference in aggressiveness on peanut plants by artificial inoculation test. In this study, de-novo genome sequencing of these two distinct strains was performed aiming to reveal the genomic basis of difference in aggressiveness. RESULTS: Scleotium rolfsii strains GP3 and ZY, with weak and high aggressiveness on peanut plants, exhibited similar growth rate and oxalic acid production in laboratory. The genomes of S. rolfsii strains GP3 and ZY were sequenced by Pacbio long read technology and exhibited 70.51 Mb and 70.61 Mb, with contigs of 27 and 23, and encoded 17,097 and 16,743 gene models, respectively. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires, which might be associated with aggressiveness, differed between GP3 and ZY. There were 58 and 45 unique pathogen-host interaction (PHI) genes in GP3 and ZY, respectively. The ZY strain had more carbohydrate-active enzymes (CAZymes) in its secretome than GP3, especially in the glycoside hydrolase family (GH), the carbohydrate esterase family (CBM), and the polysaccharide lyase family (PL). GP3 and ZY also had different effector candidates and putative secondary metabolite synthetic gene clusters. These results indicated that differences in PHI, secreted CAZymes, effectors and secondary metabolites may play important roles in aggressive difference between these two strains. CONCLUSIONS: The data provided a further understanding of the S. rolfsii genome. Genomic comparison provided clues to the difference in aggressiveness of S. rolfsii strains.


Assuntos
Arachis/genética , Arachis/microbiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Arachis/imunologia , Basidiomycota , China , Genômica , Doenças das Plantas/imunologia
9.
BMC Genomics ; 20(1): 51, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651065

RESUMO

BACKGROUND: Plant basic leucine zipper (bZIP) transcription factors play crucial roles in plant growth, development, and abiotic stress responses. However, systematic investigation and analyses of the bZIP gene family in peanut are lacking in spite of the availability of the peanut genome sequence. RESULTS: In this study, we identified 50 and 45 bZIP genes from Arachis duranensis and A. ipaensis genomes, respectively. Phylogenetic analysis showed that Arachis bZIP genes were classified into nine groups, and these clusters were supported by several group-specific features, including exon/intron structure, intron phases, MEME motifs, and predicted binding site structure. We also identified possible variations in DNA-binding-site specificity and dimerization properties among different Arachis bZIPs by inspecting the amino acid residues at some key sites. Our analysis of the evolutionary history analysis indicated that segmental duplication, rather than tandem duplication, contributed greatly to the expansion of this gene family, and that most Arachis bZIPs underwent strong purifying selection. Through RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, the co-expressed, differentially expressed and several well-studied homologous bZIPs were identified during seed development stages in peanut. We also used qRT-PCR to explore changes in bZIP gene expression in response to salt-treatment, and many candidate bZIPs in groups A, B, and S were proven to be associated with the salt-stress response. CONCLUSIONS: This study have conducted a genome-wide identification, characterization and expression analysis of bZIP genes in Arachis genomes. Our results provide insights into the evolutionary history of the bZIP gene family in peanut and the funcntion of Arachis bZIP genes during seed development and in response to salt stress.


Assuntos
Arachis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Salino/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Arachis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Íntrons/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multimerização Proteica
10.
BMC Biotechnol ; 19(1): 98, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842877

RESUMO

BACKGROUND: Rapeseed cake (RSC), as the intermediate by-product of oil extraction from the seeds of Brassica napus, can be converted into rapeseed meal (RSM) by solvent extraction to remove oil. However, compared with RSM, RSC has been rarely used as a raw material for microbial fermentation, although both RSC and RSM are mainly composed of proteins, carbohydrates and minerals. In this study, we investigated the feasibility of using untreated low-cost RSC as nitrogen source to produce the valuable cyclic lipopeptide antibiotic iturin A using Bacillus amyloliquefaciens CX-20 in submerged fermentation. Especially, the effect of oil in RSC on iturin A production and the possibility of using lipases to improve the iturin A production were analyzed in batch fermentation. RESULTS: The maximum production of iturin A was 0.82 g/L at the optimal initial RSC and glucose concentrations of 90 and 60 g/L, respectively. When RSC was substituted with RSM as nitrogen source based on equal protein content, the final concentration of iturin A was improved to 0.95 g/L. The production of iturin A was further increased by the addition of different lipase concentrations from 0.1 to 5 U/mL into the RSC medium for simultaneous hydrolysis and fermentation. At the optimal lipase concentration of 0.5 U/mL, the maximal production of iturin A reached 1.14 g/L, which was 38.15% higher than that without any lipase supplement. Although rapeseed oil and lipase were firstly shown to have negative effects on iturin A production, and the effect would be greater if the concentration of either was increased, their respective negative effects were reduced when used together. CONCLUSIONS: Appropriate relative concentrations of lipase and rapeseed oil were demonstrated to support optimal iturin A production. And simultaneous hydrolysis with lipase and fermentation was an effective way to produce iturin A from RSC using B. amyloliquefaciens CX-20.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Brassica napus/microbiologia , Fungicidas Industriais/metabolismo , Microbiologia Industrial/métodos , Lipase/química , Peptídeos Cíclicos/biossíntese , Biocatálise , Meios de Cultura/metabolismo , Fermentação , Sementes/microbiologia , Resíduos/análise
12.
BMC Genet ; 20(1): 32, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866805

RESUMO

BACKGROUND: Aflatoxin contamination caused by Aspergillus flavus is a major constraint to peanut industry worldwide due to its toxicological effects to human and animals. Developing peanut varieties with resistance to seed infection and/or aflatoxin accumulation is the most effective and economic strategy for reducing aflatoxin risk in food chain. Breeding for resistance to aflatoxin in peanut is a challenging task for breeders because the genetic basis is still poorly understood. To identify the quantitative trait loci (QTLs) for resistance to aflatoxin contamination in peanut, a recombinant inbred line (RIL) population was developed from crossing Zhonghua 10 (susceptible) with ICG 12625 (resistant). The percent seed infection index (PSII), the contents of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) of RILs were evaluated by a laboratory kernel inoculation assay. RESULTS: Two QTLs were identified for PSII including one major QTL with 11.32-13.00% phenotypic variance explained (PVE). A total of 12 QTLs for aflatoxin accumulation were detected by unconditional analysis, and four of them (qAFB1A07 and qAFB1B06.1 for AFB1, qAFB2A07 and qAFB2B06 for AFB2) exhibited major and stable effects across multiple environments with 9.32-21.02% PVE. Furthermore, not only qAFB1A07 and qAFB2A07 were co-localized in the same genetic interval on LG A07, but qAFB1B06.1 was also co-localized with qAFB2B06 on LG B06. Conditional QTL mapping also confirmed that there was a strong interaction between resistance to AFB1 and AFB2 accumulation. Genotyping of RILs revealed that qAFB1A07 and qAFB1B06.1 interacted additively to improve the resistance to both AFB1 and AFB2 accumulation. Additionally, validation of the two markers was performed in diversified germplasm collection and four accessions with resistance to aflatoxin accumulation were identified. CONCLUSIONS: Single major QTL for resistance to PSII and two important co-localized intervals associated with major QTLs for resistance to AFB1 and AFB2. Combination of these intervals could improve the resistance to aflatoxin accumulation in peanut. SSR markers linked to these intervals were identified and validated. The identified QTLs and associated markers exhibit potential to be applied in improvement of resistance to aflatoxin contamination.


Assuntos
Aflatoxinas/análise , Arachis/química , Arachis/genética , Contaminação de Alimentos , Marcadores Genéticos/genética , Genômica , Aflatoxinas/biossíntese , Arachis/microbiologia , Aspergillus flavus/metabolismo , Aspergillus flavus/fisiologia , Genoma de Planta/genética , Fenótipo , Locos de Características Quantitativas/genética , Recombinação Genética
13.
Molecules ; 22(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758981

RESUMO

An efficient base-catalyzed synthesis of arylated pyridines has been disclosed. This reaction involving conjugated acetylenes and substituted benzylamines proceeded smoothly, giving rise to tri-aryl substituted pyridines which are biologically relevant compounds in good to excellent yields in N,N-dimethylformamide (DMF) under air at 140 °C with K2CO3 as catalyst.


Assuntos
Alcinos/química , Benzilaminas/química , Piridinas/química , Piridinas/síntese química , Carbonatos/química , Catálise , Potássio/química
14.
Molecules ; 21(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27483226

RESUMO

A palladium (II) complex {[(PhCH2O)2P(CH3)2CHNCH(CH3)2]2PdCl2} catalyzed Hiyama cross-coupling reaction between aryl bromides and arylsilanes has been developed. The substituted biaryls were produced in moderate to high yields, regardless of electron-withdrawing or electron-donating.


Assuntos
Hidrocarbonetos Bromados/química , Compostos Organoplatínicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Silanos/química , Catálise
15.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932147

RESUMO

Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.


Assuntos
Arachis , Micovírus , Filogenia , Doenças das Plantas , Vírus de RNA , Arachis/virologia , Arachis/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Micovírus/classificação , Micovírus/isolamento & purificação , Micovírus/genética , Genoma Viral , Virulência , RNA Viral/genética
16.
Plant Physiol Biochem ; 208: 108448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422578

RESUMO

Sucrose content is a key factor for the flavor of edible peanut, which determines the sweet taste of fresh peanut and also attribute to pleasant flavor of roasted peanut. To explore the genetic mechanism of the sucrose content in peanut, an F2 population was created by crossing the sweet cultivar Zhonghuatian 1 (ZHT1) with Nanyangbaipi (NYBP). A genomic region spanning 28.26 kb on chromosome A06 was identified for the sucrose content through genetic mapping, elucidating 47.5% phenotypic variance explained. As the sucrose content had a significantly negative correlation with the oil content, this region was also found to be related to the oil content explaining 37.2% of phenotype variation. In this region, Arahy.42CAD1 was characterized as the most likely candidate gene through a comprehensive analysis. The nuclear localization of Arahy.42CAD1 suggests its potential involvement in the regulation of gene expression for sucrose and oil contents in peanut. Transcriptome analysis of the developing seeds in both parents revealed that genes involved in glycolysis and triacylglycerol biosynthesis pathways were not significantly down-regulated in ZHT1, indicating that the sucrose accumulation was not attributed to the suppression of triacylglycerol biosynthesis. Based on the WGCNA analysis, Arahy.42CAD1 was co-expressed with the genes involved in vesicle transport and oil body assembly, suggesting that the sucrose accumulation may be caused by disruptions in TAG transportation or storage mechanisms. These findings offer new insights into the molecular mechanisms governing sucrose accumulation in peanut, and also provide a potential gene target for enhancing peanut flavor.


Assuntos
Arachis , Sacarose , Arachis/genética , Arachis/metabolismo , Sacarose/metabolismo , Perfilação da Expressão Gênica , Mapeamento Cromossômico , Triglicerídeos/metabolismo , Transcriptoma/genética , Sementes/genética , Sementes/metabolismo
17.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674465

RESUMO

Trehalose-6-phosphate phosphatase (TPP) is a pivotal enzyme in trehalose biosynthesis which plays an essential role in plant development and in the abiotic stress response. However, little is currently known about TPPs in groundnut. In the present study, a total of 16 AhTPP genes were identified, and can be divided into three phylogenetic subgroups. AhTPP members within the same subgroups generally displayed similar exon-intron structures and conserved motifs. Gene collinearity analysis revealed that segmental duplication was the primary factor driving the expansion of the AhTPP family. An analysis of the upstream promoter region of AhTPPs revealed eight hormone- and four stress-related responsive cis-elements. Transcriptomic analysis indicated high expression levels of AhTPP genes in roots or flowers, while RT-qPCR analysis showed upregulation of the six tested genes under different abiotic stresses, suggesting that AhTPPs play roles in growth, development, and response to various abiotic stresses. Subcellular localization analysis showed that AhTPP1A and AhTPP5A were likely located in both the cytoplasm and the nucleus. To further confirm their functions, the genes AhTPP1A and AhTPP5A were individually integrated into yeast expression vectors. Subsequent experiments demonstrated that yeast cells overexpressing these genes displayed increased tolerance to osmotic and salt stress compared to the control group. This study will not only lay the foundation for further study of AhTPP gene functions, but will also provide valuable gene resources for improving abiotic stress tolerance in groundnut and other crops.

18.
Front Plant Sci ; 15: 1362277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516669

RESUMO

Introduction: Peanut (Arachis hypogaea L.), also called groundnut is an important oil and cash crop grown widely in the world. The annual global production of groundnuts has increased to approximately 50 million tons, which provides a rich source of vegetable oils and proteins for humans. Low temperature (non-freezing) is one of the major factors restricting peanut growth, yield, and geographic distribution. Since the complexity of cold-resistance trait, the molecular mechanism of cold tolerance and related gene networks were largely unknown in peanut. Methods: In this study, comparative transcriptomic analysis of two peanut cultivars (SLH vs. ZH12) with differential cold tolerance under low temperature (10°C) was performed using Oxford Nanopore Technology (ONT) platform. Results and discussion: As a result, we identified 8,949 novel gene loci and 95,291 new/novel isoforms compared with the reference database. More differentially expressed genes (DEGs) were discovered in cold-sensitive cultivar (ZH12) than cold-tolerant cultivar (SLH), while more alternative splicing events were found in SLH compared to ZH12. Gene Ontology (GO) analyses of the common DEGs showed that the "response to stress", "chloroplast part", and "transcription factor activity" were the most enriched GO terms, indicating that photosynthesis process and transcription factors play crucial roles in cold stress response in peanut. We also detected a total of 708 differential alternative splicing genes (DASGs) under cold stress compared to normal condition. Intron retention (IR) and exon skipping (ES) were the most prevalent alternative splicing (AS) events. In total, 4,993 transcription factors and 292 splicing factors were detected, many of them had differential expression levels and/or underwent AS events in response to cold stress. Overexpression of two candidate genes (encoding trehalose-6-phosphatephosphatases, AhTPPs) in yeast improves cold tolerance. This study not only provides valuable resources for the study of cold resistance in peanut but also lay a foundation for genetic modification of cold regulators to enhance stress tolerance in crops.

19.
Genes (Basel) ; 14(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510351

RESUMO

Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Humanos , Arachis/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
20.
Genes (Basel) ; 14(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36980897

RESUMO

Peanut is susceptible to Aspergillus flavus infection, and the consequent aflatoxin contamination has been recognized as an important risk factor affecting food safety and industry development. Planting peanut varieties with resistance to aflatoxin contamination is regarded as an ideal approach to decrease the risk in food safety, but most of the available resistant varieties have not been extensively used in production because of their low yield potential mostly due to possessing small pods and seeds. Hence, it is highly necessary to integrate resistance to aflatoxin and large seed weight. In this study, an RIL population derived from a cross between Zhonghua 16 with high yield and J 11 with resistance to infection of A. flavus and aflatoxin production, was used to identify quantitative trait locus (QTL) for aflatoxin production (AP) resistance and hundred-seed weight (HSW). From combined analysis using a high-density genetic linkage map constructed, 11 QTLs for AP resistance with 4.61-11.42% phenotypic variation explanation (PVE) and six QTLs for HSW with 3.20-28.48% PVE were identified, including three major QTLs for AP resistance (qAFTA05.1, qAFTB05.2 and qAFTB06.3) and three for HSW (qHSWA05, qHSWA08 and qHSWB06). In addition, qAFTA05.1, qAFTB06.3, qHSWA05, qHSWA08 and qHSWB06 were detected in multiple environments. The aflatoxin contents under artificial inoculation were decreased by 34.77-47.67% in those segregated lines harboring qAFTA05.1, qAFTB05.2 and qAFTB06.3, while the HSWs were increased by 47.56-49.46 g in other lines harboring qHSWA05, qHSWA08 and qHSWB06. Conditional QTL mapping indicated that HSW and percent seed infection index (PSII) had no significant influence on aflatoxin content. Interestingly, the QT 1059 simultaneously harboring alleles of aflatoxin content including qAFTA05.1 and qAFTB05.2, alleles of PSII including qPSIIB03.1, qPSIIB03.2, and qPSIIB10 and alleles of HSW including qHSWA05, qHSWB06, qHSWA08 had better resistance to A. flavus infection and to toxin production and higher yield potential compared with the two parents of the RIL. The above identified major loci for AP resistance and HWS would be helpful for marker-assisted selection in peanut breeding.


Assuntos
Aflatoxinas , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Arachis/genética , Melhoramento Vegetal , Mapeamento Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA