Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
2.
EMBO J ; 41(10): e109523, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35301732

RESUMO

The process by which bacterial cells build their intricate flagellar motility apparatuses has long fascinated scientists. Our understanding of this process comes mainly from studies of purified flagella from two species, Escherichia coli and Salmonella enterica. Here, we used electron cryo-tomography (cryo-ET) to image the assembly of the flagellar motor in situ in diverse Proteobacteria: Hylemonella gracilis, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Shewanella oneidensis. Our results reveal the in situ structures of flagellar intermediates, beginning with the earliest flagellar type III secretion system core complex (fT3SScc) and MS-ring. In high-torque motors of Beta-, Gamma-, and Epsilon-proteobacteria, we discovered novel cytoplasmic rings that interact with the cytoplasmic torque ring formed by FliG. These rings, associated with the MS-ring, assemble very early and persist until the stators are recruited into their periplasmic ring; in their absence the stator ring does not assemble. By imaging mutants in Helicobacter pylori, we found that the fT3SScc proteins FliO and FliQ are required for the assembly of these novel cytoplasmic rings. Our results show that rather than a simple accretion of components, flagellar motor assembly is a dynamic process in which accessory components interact transiently to assist in building the complex nanomachine.


Assuntos
Campylobacter jejuni , Helicobacter pylori , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Sistemas de Secreção Tipo III/metabolismo
3.
EMBO J ; 38(14): e100957, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304634

RESUMO

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly. Here, using electron cryo-tomography and sub-tomogram averaging of intact Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis cells, we study flagellar motor disassembly and assembly in situ. We first show that motor disassembly results in stable outer membrane-embedded sub-complexes. These sub-complexes consist of the periplasmic embellished P- and L-rings, and bend the membrane inward while it remains apparently sealed. Additionally, we also observe various intermediates of the assembly process including an inner-membrane sub-complex consisting of the C-ring, MS-ring, and export apparatus. Finally, we show that the L-ring is responsible for reshaping the outer membrane, a crucial step in the flagellar assembly process.


Assuntos
Bactérias/citologia , Proteínas de Bactérias/metabolismo , Flagelos/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Membrana Externa Bacteriana/metabolismo , Tomografia com Microscopia Eletrônica , Escherichia coli/citologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Flagelos/metabolismo , Legionella pneumophila/citologia , Legionella pneumophila/metabolismo , Legionella pneumophila/ultraestrutura , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura , Shewanella/citologia , Shewanella/metabolismo , Shewanella/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 117(16): 8941-8947, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241888

RESUMO

The bacterial flagellum is an amazing nanomachine. Understanding how such complex structures arose is crucial to our understanding of cellular evolution. We and others recently reported that in several Gammaproteobacterial species, a relic subcomplex comprising the decorated P and L rings persists in the outer membrane after flagellum disassembly. Imaging nine additional species with cryo-electron tomography, here, we show that this subcomplex persists after flagellum disassembly in other phyla as well. Bioinformatic analyses fail to show evidence of any recent horizontal transfers of the P- and L-ring genes, suggesting that this subcomplex and its persistence is an ancient and conserved feature of the flagellar motor. We hypothesize that one function of the P and L rings is to seal the outer membrane after motor disassembly.


Assuntos
Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Flagelos/genética , Especiação Genética , Bactérias/citologia , Bactérias/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/ultraestrutura , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/metabolismo , Genes Bacterianos , Filogenia
5.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176000

RESUMO

Proteus mirabilis is a Gram-negative Gammaproteobacterium and a major causative agent of urinary tract infections in humans. It is characterized by its ability to switch between swimming motility in liquid media and swarming on solid surfaces. Here, we used cryo-electron tomography and subtomogram averaging to reveal the structure of the flagellar motor of P. mirabilis at nanometer resolution in intact cells. We found that P. mirabilis has a motor that is structurally similar to those of Escherichia coli and Salmonella enterica, lacking the periplasmic elaborations that characterize other more specialized gammaproteobacterial motors. In addition, no density corresponding to stators was present in the subtomogram average suggesting that the stators are dynamic. Finally, several assembly intermediates of the motor were seen that support the inside-out assembly pathway.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos , Proteínas Motores Moleculares , Proteus mirabilis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Escherichia coli/química , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Proteus mirabilis/química , Proteus mirabilis/citologia , Proteus mirabilis/ultraestrutura , Salmonella enterica/química , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/ultraestrutura
6.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862756

RESUMO

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estruturas Bacterianas , Flagelos/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
7.
Mol Cell ; 49(4): 730-42, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23333309

RESUMO

Forkhead box O (FOXO; DAF-16 in worms) transcription factors, which are of vital importance in cell-cycle control, stress resistance, tumor suppression, and organismal lifespan, are largely regulated through nucleo-cytoplasmic shuttling. Insulin signaling keeps FOXO/DAF-16 cytoplasmic, and hence transcriptionally inactive. Conversely, as in loss of insulin signaling, reactive oxygen species (ROS) can activate FOXO/DAF-16 through nuclear accumulation. How ROS regulate the nuclear translocation of FOXO/DAF-16 is largely unknown. Cysteine oxidation can stabilize protein-protein interactions through the formation of disulfide-bridges when cells encounter ROS. Using a proteome-wide screen that identifies ROS-induced mixed disulfide-dependent complexes, we discovered several interaction partners of FOXO4, one of which is the nuclear import receptor transportin-1. We show that disulfide formation with transportin-1 is required for nuclear localization and the activation of FOXO4/DAF-16 induced by ROS, but not by the loss of insulin signaling. This molecular mechanism for nuclear shuttling is conserved in C. elegans and directly connects redox signaling to the longevity protein FOXO/DAF-16.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Cistina/metabolismo , Fatores de Transcrição Forkhead , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , beta Carioferinas/fisiologia
8.
J Struct Biol ; 205(2): 163-169, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639925

RESUMO

Using a new Titan Krios stage equipped with a single-axis holder, we developed two methods to accelerate the collection of tilt-series. We demonstrate a continuous-tilting method that can record a tilt-series in seconds, but with loss of details finer than ∼4 nm. We also demonstrate a fast-incremental method that can record a tilt-series several-fold faster than current methods and with similar resolution. We characterize the utility of both methods in real biological electron cryotomography workflows. We identify opportunities for further improvements in hardware and software and speculate on the impact such advances could have on structural biology.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software
9.
Q Rev Biophys ; 49: e15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27659286

RESUMO

Increasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane-protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein-protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein-ligand and protein-protein interactions that underlie essential biological functions in cellular membranes.

10.
Nat Methods ; 12(7): 649-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984698

RESUMO

Studying biomolecules at atomic resolution in their native environment is the ultimate aim of structural biology. We investigated the bacterial type IV secretion system core complex (T4SScc) by cellular dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy to validate a structural model previously generated by combining in vitro and in silico data. Our results indicate that T4SScc is well folded in the cellular setting, revealing protein regions that had been elusive when studied in vitro.


Assuntos
Proteínas de Bactérias/química , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
11.
Angew Chem Int Ed Engl ; 56(38): 11498-11501, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736869

RESUMO

Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.


Assuntos
Células Eucarióticas/citologia , Fótons , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microscopia Eletrônica , Tamanho da Partícula , Propriedades de Superfície
12.
Angew Chem Int Ed Engl ; 54(52): 15799-803, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26555653

RESUMO

(1) H-detection can greatly improve spectral sensitivity in biological solid-state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of (1) H-detection by the loss of aliphatic side-chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for (1) H-detected ssNMR, and it gives high quality spectra for both side-chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent (1) H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR.

13.
iScience ; 26(7): 107210, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485371

RESUMO

Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.

14.
Nat Microbiol ; 8(7): 1267-1279, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349588

RESUMO

Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Humanos , Animais , Bdellovibrio/metabolismo , Tomografia com Microscopia Eletrônica , Comportamento Predatório
15.
J Mol Biol ; 433(13): 167004, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33891903

RESUMO

The bacterial flagellum consists of a long extracellular filament that is rotated by a motor embedded in the cell envelope. While flagellar assembly has been extensively studied,1 the disassembly process remains less well understood. In addition to the programmed flagellar ejection that occurs during the life cycle of Caulobacter crescentus, we and others have recently shown that many bacterial species lose their flagella under starvation conditions, leaving relic structures in the outer membrane.2-7 However, it remains unknown whether the programmed flagellar ejection of C. crescentus leaves similar relics or not. Here, we imaged the various stages of the C. crescentus life cycle using electron cryo-tomography (cryo-ET) and found that flagellar relic subcomplexes, akin to those produced in the starvation-induced process, remain as a result of flagellar ejection during cell development. This similarity suggests that the programmed flagellar ejection of C. crescentus might share a common evolutionary path with the more general, and likely more ancient,3 starvation-related flagellar loss.


Assuntos
Caulobacter crescentus/fisiologia , Parede Celular/metabolismo , Flagelos/fisiologia , Lipopolissacarídeos/metabolismo , Peptidoglicano/metabolismo , Corpos Basais/fisiologia , Corpos Basais/ultraestrutura , Caulobacter crescentus/metabolismo , Caulobacter crescentus/ultraestrutura , Parede Celular/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/ultraestrutura , Flagelos/ultraestrutura
16.
Methods Mol Biol ; 2215: 83-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33368000

RESUMO

Electron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.g., focused ion beam milling (FIB-milling) and cryo-light microscopy, has extended the realm of cryo-ET to include transient molecular complexes embedded deep in thick samples (like eukaryotic cells) and enhanced the resolution of structures obtained by cryo-ET. In this chapter, we will present an outline of how to perform cryo-ET studies on a wide variety of biological samples including prokaryotic and eukaryotic cells and biological plant tissues. This outline will include sample preparation, data collection, and data processing as well as hybrid approaches like FIB-milling, cryosectioning, and cryo-correlated light and electron microscopy (cryo-CLEM).


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Substâncias Macromoleculares/química , Células 3T3 , Animais , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Crioultramicrotomia , Tomografia com Microscopia Eletrônica/instrumentação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Camundongos , Software , Manejo de Espécimes
17.
mBio ; 12(3): e0029821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34098733

RESUMO

The bacterial flagellar motor is a complex macromolecular machine whose function and self-assembly present a fascinating puzzle for structural biologists. Here, we report that in diverse bacterial species, cell lysis leads to loss of the cytoplasmic switch complex and associated ATPase before other components of the motor. This loss may be prevented by the formation of a cytoplasmic vesicle around the complex. These observations suggest a relatively loose association of the switch complex with the rest of the flagellar machinery. IMPORTANCE We show in eight different bacterial species (belonging to different phyla) that the flagellar motor loses its cytoplasmic switch complex upon cell lysis, while the rest of the flagellum remains attached to the cell body. This suggests an evolutionary conserved weak interaction between the switch complex and the rest of the flagellum which is important to understand how the motor evolved. In addition, this information is crucial for mimicking such nanomachines in the laboratory.


Assuntos
Bactérias/metabolismo , Flagelos/fisiologia , Bactérias/química , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/química , Conformação Proteica
18.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468314

RESUMO

The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.


Assuntos
Bactérias/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Externa Bacteriana/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Bactérias/classificação , Complexos Multiproteicos
19.
Photodiagnosis Photodyn Ther ; 32: 102029, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980553

RESUMO

This study used Electron Cryo-tomography (ECT) and fluorescent images to evaluate antimicrobial photodynamic therapy (aPDT) on the envelope architecture of a Gram-negative bacteria and the effects of combined therapy of aPDT and antibiotics. Standard and clinical suspension of Escherichia coli were submitted to photodynamic treatment with methylene blue solution (100µM) and a 100 mW LED emitting at 660 nm with 3 and 18 J of energy. As a control group, a suspension of E. coli was submitted to penicillin V for 60 min at 30 °C, to compare the damage in cell wall structure. After treatment, ECT images were collected and E. coli biofilms were grown in glass-cover slides and stained with live/dead staining for fluorescence analysis before and after treatments. Bacteria were also submitted to disc diffusion and MIC50 tests with Ampicillin, Amoxicillin + Clavulanic acid, Clindamycin and Erythromycin. For in vivo experiment Galleria mellonella larvae were infected with E. coli and treated with antibiotics, aPDT or combined therapy. ECT images presented damage to cell walls and vesicles structures inside and outside the bacteria and fluorescent images showed dose dependent effect of aPDT. Antibiotic or aPDT alone did not improve the survival of caterpillars, but the combined therapy significantly increased survival curve. ECT and fluorescent images shows that aPDT seems to promote micro-damages to cell envelope and causes the production of membrane vesicles permeabilizing cell membranes. The results showed that pre-treating bacterial cells with a photosensitizer and light make them more susceptible to antibiotics and could be an alternative to local infection treatment by resistant bacteria.


Assuntos
Antibacterianos , Anti-Infecciosos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Antibacterianos/farmacologia , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
20.
Nat Microbiol ; 5(4): 651, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32076134

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA