Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(51): 25808-25815, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792189

RESUMO

Alcohol is a widely consumed dietary component by patients with autoimmune neuroinflammatory diseases, but current evidence on the effects of alcohol in these conditions is confounding. Epidemiological studies suggest moderate consumption of alcohol may be protective in some autoimmune diseases; however, this correlation has not been directly investigated. Here, we characterize the effects of moderate-dose alcohol in a model system of autoimmune neuroinflammation, experimental autoimmune encephalomyelitis (EAE). Male and female C57BL/6J mice were fed a 2.6% alcohol or isocaloric diet for 3 wk prior to MOG35-55 EAE induction. Surprisingly, alcohol-fed males experienced significantly greater disease remission compared to alcohol-fed females and control-fed counterparts. We observed a male-specific decrease in microglial density in alcohol-consuming animals in cervical and thoracic spinal cord in late-stage disease. In the gut, alcohol diet resulted in several sex-specific alterations in key microbiota known for their regulatory immune roles, including Turicibacter, Akkermansia, Prevotella, and Clostridium Using a correlation network modeling approach, we identified unique bacterial modules that are significantly enriched in response to treatment and sex, composed of Clostridial taxa and several Firmicutes known to be protective in EAE. Together, these data demonstrate the potential of alcohol to significantly alter the course of autoimmunity differentially in males and females via effects on gut bacterial networks and support further need to evaluate dose and sex-specific alcohol effects in multiple sclerosis (MS) and other autoimmune neuroinflammatory conditions.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Etanol/metabolismo , Etanol/farmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Animais , Doenças Autoimunes/prevenção & controle , Bactérias/classificação , Bactérias/efeitos dos fármacos , Dieta , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Esclerose Múltipla , Fatores Sexuais , Medula Espinal/patologia
2.
Exp Eye Res ; 208: 108616, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33979630

RESUMO

Diabetic retinopathy (DR), a major microvascular complication of diabetes, affects most diabetic individuals and has become the leading cause of vision loss. Metabolic memory associated with diabetes retains the risk of disease occurrence even after the termination of glycemic insult. Further, various limitations associated with its current diagnostic and treatment strategies like unavailability of early diagnostic and treatment methods, variation in treatment response from patient to patient, and cost-effectiveness have driven the need to find alternative solutions. Post-transcriptional epigenetic modification of RNA mainly, N6-methyladenosine (m6A), is an emerging concept in the scientific community. It has an indispensable effect in various physiological and pathological conditions. m6A mediates its effect through the various reader, writer, and eraser proteins. Recent studies have shown the impact of m6A RNA modification on various disease conditions, including diabetes, but its role in diabetic retinopathy is still unclear. However, change in m6A levels has been observed in various prime aggravators of DR pathogenesis, such as inflammation, oxidative stress, and angiogenesis. Further, various non-coding RNAs like microRNA, lncRNA, and circRNA are also associated with DR, and m6A has been shown to affect all these non-coding RNAs. This review is concerned with the possible mechanisms through which alteration in m6A modification of RNA can participate in the DR progression and pathogenesis and its expected role in metabolic memory phenomena.


Assuntos
Retinopatia Diabética/genética , Epigênese Genética/genética , Metiltransferases/genética , MicroRNAs/genética , Retinopatia Diabética/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , MicroRNAs/metabolismo
3.
J Cell Physiol ; 235(3): 1933-1947, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31531859

RESUMO

Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.


Assuntos
Retinopatia Diabética/genética , Epigênese Genética/genética , Metilação de DNA/genética , Diabetes Mellitus/genética , Epigenômica/métodos , Humanos
4.
Front Cell Dev Biol ; 10: 743224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359459

RESUMO

Retinoblastoma (Rb) is the most common childhood malignancy initiated by biallelic mutation in RB1 gene and driven by various epigenetic events including DNA methylation and microRNA dysregulation. Hence, understanding the key genes that are critically modulated by epigenetic modifications in RB1 -/- cells is very important to identify prominent biomarkers and therapeutic targets of Rb. In this study, we for the first time have integrated various Rb microarray NCBI-GEO datasets including DNA Methylation (GSE57362), miRNA (GSE7072) and mRNA (GSE110811) to comprehensively investigate the epigenetic consequences of RB loss in retinoblastoma tumors and identify genes with the potential to serve as early diagnostic markers and therapeutic targets for Rb. Interestingly, the GEO2R and co-expression network analysis have identified three genes namely E2F3, ESR1, and UNC5D that are significantly deregulated by modified DNA methylation, mRNA and microRNA expression in Rb tumors. Due to their recognition in all epigenetic, transcriptomic, and miRNA datasets, we have termed these genes as "common genes". The results of our integrative bioinformatics analysis were validated in vitro by studying the gene and protein expression of these common genes in Y79, WERI-Rb-1, Rb cell lines and non-tumorigenic retinal pigment epithelial cell line (hTERT-RPE). The expression of E2F3 and UNC5D were up-regulated and that of ESR1 was down-regulated in Rb tumor cells when compared to that in non-tumorigenic hTERT-RPE cells. More importantly, UNC5D, a potent tumor suppressor gene in most cancers is significantly up-regulated in Y79 and Weri Rb1 cells, which, in turn, questions its anti-cancer properties. Together, our study shows that E2F3, ESR1, and UNC5D may be crucially involved in Rb tumorigenesis and possess the potential to act as early diagnostic biomarkers and therapeutic targets of Rb.

5.
Front Genet ; 11: 576442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304382

RESUMO

The increased incidence of diabetic retinopathy (DR) and the legacy effect associated with it has raised a great concern toward the need to find early diagnostic and treatment strategies. Identifying alterations in genes and microRNAs (miRNAs) is one of the most critical steps toward understanding the mechanisms by which a disease progresses, and this can be further used in finding potential diagnostic and prognostic biomarkers and treatment methods. We selected different datasets to identify altered genes and miRNAs. The integrative analysis was employed to find potential candidate genes (differentially expressed and aberrantly methylated genes that are also the target of altered miRNAs) and early genes (genes showing altered expression and methylation pattern during early stage of DR) for DR. We constructed a protein-protein interaction (PPI) network to find hub genes (potential candidate genes showing a greater number of interactions) and modules. Gene ontologies and pathways associated with the identified genes were analyzed to determine their role in DR progression. A total of 271 upregulated-hypomethylated genes, 84 downregulated-hypermethylated genes, 11 upregulated miRNA, and 30 downregulated miRNA specific to DR were identified. 40 potential candidate genes and 9 early genes were also identified. PPI network analysis revealed 7 hub genes (number of interactions >5) and 1 module (score = 5.67). Gene ontology and pathway analysis predicted enrichment of genes in oxidoreductase activity, binding to extracellular matrix, immune responses, leukocyte migration, cell adhesion, PI3K-Akt signaling pathway, ECM receptor interaction, etc., and thus their association with DR pathogenesis. In conclusion, we identified 7 hub genes and 9 early genes that could act as a potential prognostic, diagnostic, or therapeutic target for DR, and a few early genes could also play a role in metabolic memory phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA