Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 177(5): 1346-1360.e24, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080068

RESUMO

To decipher dynamic brain information processing, current genetically encoded calcium indicators (GECIs) are limited in single action potential (AP) detection speed, combinatorial spectral compatibility, and two-photon imaging depth. To address this, here, we rationally engineered a next-generation quadricolor GECI suite, XCaMPs. Single AP detection was achieved within 3-10 ms of spike onset, enabling measurements of fast-spike trains in parvalbumin (PV)-positive interneurons in the barrel cortex in vivo and recording three distinct (two inhibitory and one excitatory) ensembles during pre-motion activity in freely moving mice. In vivo paired recording of pre- and postsynaptic firing revealed spatiotemporal constraints of dendritic inhibition in layer 1 in vivo, between axons of somatostatin (SST)-positive interneurons and apical tufts dendrites of excitatory pyramidal neurons. Finally, non-invasive, subcortical imaging using red XCaMP-R uncovered somatosensation-evoked persistent activity in hippocampal CA1 neurons. Thus, the XCaMPs offer a critical enhancement of solution space in studies of complex neuronal circuit dynamics. VIDEO ABSTRACT.


Assuntos
Potenciais de Ação/fisiologia , Axônios/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Animais , Córtex Cerebral/citologia , Feminino , Hipocampo/citologia , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley
2.
Opt Express ; 32(5): 7289-7306, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439413

RESUMO

High-speed three-dimensional (3D) imaging is essential for revealing the structure and functions of biological specimens. Confocal laser scanning microscopy has been widely employed for this purpose. However, it requires a time-consuming image-stacking procedure. As a solution, we previously developed light needle microscopy using a Bessel beam with a wavefront-engineered approach [Biomed. Opt. Express13, 1702 (2022)10.1364/BOE.449329]. However, this method applies only to multiphoton excitation microscopy because of the requirement to reduce the sidelobes of the Bessel beam. Here, we introduce a beam that produces a needle spot while eluding the intractable artifacts due to the sidelobes. This beam can be adopted even in one-photon excitation fluorescence 3D imaging. The proposed method can achieve real-time, rapid 3D observation of 200-nm particles in water at a rate of over 50 volumes per second. In addition, fine structures, such as the spines of neurons in fixed mouse brain tissue, can be visualized in 3D from a single raster scan of the needle spot. The proposed method can be applied to various modalities in biological imaging, enabling rapid 3D image acquisition.

3.
Cancer Sci ; 109(4): 912-918, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29465804

RESUMO

In vivo optical imaging using fluorescence and bioluminescence is superior to other methods in terms of spatiotemporal resolution and specificity, and represents a new technology for comprehensively studying living organisms in a less invasive way. Nowadays, it is an indispensable technology for studying many aspects of cancer biology, including dynamic invasion and metastasis. In observations of fluorescence or bioluminescence signals in a living body, various problems were caused by optical characteristics such as absorption and scattering and, therefore, observation of deep tissue was difficult. Recent developments in techniques for observation of the deep tissues of living animals overcame this difficulty by improving bioluminescent proteins, fluorescent proteins, and fluorescent dyes, as well as detection technologies such as two-photon excitation microscopy. In the present review, we introduce these technological developments and in vivo application of bioluminescence and fluorescence imaging, and discuss future perspectives on the use of in vivo optical imaging technology in cancer research.


Assuntos
Neoplasias/diagnóstico , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Animais , Fluorescência , Humanos , Medições Luminescentes/métodos , Microscopia de Fluorescência/métodos , Sensibilidade e Especificidade
4.
Eur J Neurosci ; 47(9): 1033-1042, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512842

RESUMO

Three-dimensional (3D) super-resolution microscopy technique structured illumination microscopy (SIM) imaging of dendritic spines along the dendrite has not been previously performed in fixed tissues, mainly due to deterioration of the stripe pattern of the excitation laser induced by light scattering and optical aberrations. To address this issue and solve these optical problems, we applied a novel clearing reagent, LUCID, to fixed brains. In SIM imaging, the penetration depth and the spatial resolution were improved in LUCID-treated slices, and 160-nm spatial resolution was obtained in a large portion of the imaging volume on a single apical dendrite. Furthermore, in a morphological analysis of spine heads of layer V pyramidal neurons (L5PNs) in the medial prefrontal cortex (mPFC) of chronic dexamethasone (Dex)-treated mice, SIM imaging revealed an altered distribution of spine forms that could not be detected by high-NA confocal imaging. Thus, super-resolution SIM imaging represents a promising high-throughput method for revealing spine morphologies in single dendrites.


Assuntos
Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Feminino , Imageamento Tridimensional/métodos , Lasers , Luz , Iluminação , Camundongos Transgênicos , Microscopia/métodos
6.
Angew Chem Int Ed Engl ; 57(32): 10137-10141, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29984448

RESUMO

Various fluorescence microscopy techniques require bright NIR-emitting fluorophores with high chemical and photostability. Now, the significant performance improvement of phosphorus-substituted rhodamine dyes (PORs) upon substitution at the 9-position with a 2,6-dimethoxyphenyl group is reported. The thus obtained dye PREX 710 was used to stain mitochondria in living cells, which allowed long-term and three-color imaging in the vis-NIR range. Moreover, the high fluorescence longevity of PREX 710 allows tracking a dye-labeled biomolecule by single-molecule microscopy under physiological conditions. Deep imaging of blood vessels in mice brain has also been achieved using the bright NIR-emitting PREX 710-dextran conjugate.

7.
BMC Bioinformatics ; 15: 415, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25523409

RESUMO

BACKGROUND: Recent advances in microscopy enable the acquisition of large numbers of tomographic images from living tissues. Three-dimensional microscope images are often displayed with volume rendering by adjusting the transfer functions. However, because the emissions from fluorescent materials and the optical properties based on point spread functions affect the imaging results, the intensity value can differ locally, even in the same structure. Further, images obtained from brain tissues contain a variety of neural structures such as dendrites and axons with complex crossings and overlapping linear structures. In these cases, the transfer functions previously used fail to optimize image generation, making it difficult to explore the connectivity of these tissues. RESULTS: This paper proposes an interactive visual exploration method by which the transfer functions are modified locally and interactively based on multidimensional features in the images. A direct editing interface is also provided to specify both the target region and structures with characteristic features, where all manual operations can be performed on the rendered image. This method is demonstrated using two-photon microscope images acquired from living mice, and is shown to be an effective method for interactive visual exploration of overlapping similar structures. CONCLUSIONS: An interactive visualization method was introduced for local improvement of visualization by volume rendering in two-photon microscope images containing regions in which linear nerve structures crisscross in a complex manner. The proposed method is characterized by the localized multidimensional transfer function and interface where the parameters can be determined by the user to suit their particular visualization requirements.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Software , Animais , Vasos Sanguíneos/citologia , Dendritos/metabolismo , Fígado/citologia , Camundongos , Neurônios/citologia , Interface Usuário-Computador
8.
Opt Express ; 22(5): 5746-53, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663912

RESUMO

In this study, we investigated the picosecond optical pulse generation from a 1064-nm distributed feedback laser diode under strong gain switching. The spectrum of the generated optical pulses was manipulated in two different ways: (i) by extracting the short-wavelength components of the optical pulse spectrum and (ii) by compensating for spectral chirping in the extracted mid-spectral region. Both of these methods shortened the optical pulse duration to approximately 7 ps. These optical pulses were amplified to over 20-kW peak power for two-photon microscopy. We obtained clear two-photon images of neurons in a fixed brain slice of H-line mouse expressing enhanced yellow fluorescent protein. Furthermore, a successful experiment was also confirmed for in vivo deep region H-line mouse brain neuron imaging.

9.
Sci Rep ; 14(1): 378, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172327

RESUMO

Sweat is an essential protection system for the body, but its failure can result in pathologic conditions, including several skin diseases, such as palmoplantar pustulosis (PPP). As reduced intraepidermal E-cadherin expression in skin lesions was confirmed in PPP skin lesions, a role for interleukin (IL)-1-rich sweat in PPP has been proposed, and IL-1 has been implicated in the altered E-cadherin expression observed in both cultured keratinocytes and mice epidermis. For further investigation, live imaging of sweat perspiration on a mouse toe-pad under two-photon excitation microscopy was performed using a novel fluorescent dye cocktail (which we named JSAC). Finally, intraepidermal vesicle formation which is the main cause of PPP pathogenesis was successfully induced using our "LASER-snipe" technique with JSAC. "LASER-snipe" is a type of laser ablation technique that uses two-photon absorption of fluorescent material to destroy a few acrosyringium cells at a pinpoint location in three-dimensional space of living tissue to cause eccrine sweat leakage. These observatory techniques and this mouse model may be useful not only in live imaging for physiological phenomena in vivo such as PPP pathomechanism investigation, but also for the field of functional physiological morphology.


Assuntos
Psoríase , Pele , Animais , Camundongos , Pele/metabolismo , Suor/metabolismo , Psoríase/metabolismo , Epiderme/metabolismo , Glândulas Écrinas/metabolismo , Interleucina-1/metabolismo , Imagem Óptica/efeitos adversos , Caderinas/metabolismo
10.
Commun Biol ; 6(1): 13, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609486

RESUMO

Trehalose is the nonreducing disaccharide of glucose, evolutionarily conserved in invertebrates. The living skin equivalent (LSE) is an organotypic coculture containing keratinocytes cultivated on fibroblast-populated dermal substitutes. We demonstrated that human primary fibroblasts treated with highly concentrated trehalose promote significantly extensive spread of the epidermal layer of LSE without any deleterious effects. The RNA-seq analysis of trehalose-treated 2D and 3D fibroblasts at early time points revealed the involvement of the CDKN1A pathway, the knockdown of which significantly suppressed the upregulation of DPT, ANGPT2, VEGFA, EREG, and FGF2. The trehalose-treated fibroblasts were positive for senescence-associated ß-galactosidase. Finally, transplantation of the dermal substitute with trehalose-treated fibroblasts accelerated wound closure and increased capillary formation significantly in the experimental mouse wounds in vivo, which was canceled by the CDKN1A knockdown. These data indicate that high-concentration trehalose can induce the senescence-like state in fibroblasts via CDKN1A/p21, which may be therapeutically useful for optimal wound repair.


Assuntos
Pele , Trealose , Humanos , Animais , Camundongos , Trealose/farmacologia , Trealose/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Fibroblastos/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
11.
Sci Rep ; 12(1): 8556, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595809

RESUMO

Insulin balls, localized insulin amyloids formed at the site of repeated insulin injections in patients with diabetes, cause poor glycemic control and cytotoxicity. Our previous study has shown that insulin forms two types of amyloids; toxic amyloid formed from the intact insulin ((i)-amyloid) and less-toxic amyloid formed in the presence of the reducing reagent TCEP ((r)-amyloid), suggesting insulin amyloid polymorphism. However, the differences in the formation mechanism and cytotoxicity expression are still unclear. Herein, we demonstrate that the liquid droplets, which are stabilized by electrostatic interactions, appear only in the process of toxic (i)-amyloid formation, but not in the less-toxic (r)-amyloid formation process. The effect of various additives such as arginine, 1,6-hexanediol, and salts on amyloid formation was also examined to investigate interactions that are important for amyloid formation. Our results indicate that the maturation processes of these two amyloids were significantly different, whereas the nucleation by hydrophobic interactions was similar. These results also suggest the difference in the formation mechanism of two different insulin amyloids is attributed to the difference in the intermolecular interactions and could be correlated with the cytotoxicity.


Assuntos
Amiloide , Amiloidose , Insulina , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas , Amiloidose/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulina/química , Insulina/metabolismo
12.
ACS Appl Mater Interfaces ; 14(36): 40481-40490, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36063083

RESUMO

For in vivo two-photon fluorescence microscopy (2PM) imaging, the development of techniques that can improve the observable depth and temporal resolution is an important challenge to address biological and biomedical concerns such as vascular dynamics in the deep brain (typically the hippocampal region) of living animals. Improvements have been achieved through two approaches: an optical approach using a highly tissue-penetrating excitation laser oscillating in the second near-infrared wavelength region (NIR-II, 1100-1350 nm) and a chemical approach employing fluorescent probes with high two-photon brightness (characterized by the product of the two-photon absorption cross section, σ2, and the fluorescence quantum yield, Φ). To integrate these two approaches, we developed a fluorescent dye exhibiting a sufficiently high σ2Φ value of 68 Goeppert-Mayer units at 1100 nm. When a nanoemulsion encapsulating >1000 dye molecules per particle and a 1100 nm laser were employed for 2PM imaging, capillary blood vessels in almost the entire hippocampal CA1 region of the mouse brain (approximately 1.1-1.5 mm below the surface) were clearly visualized at a frame rate of 30 frames s-1 (averaged over eight frames, practically 3.75 frames s-1). This observable depth and frame rate are much higher than those in previous reports on 2PM imaging. Furthermore, this nanoemulsion allowed for the visualization of blood vessels at a depth of 1.8 mm, corresponding to the hippocampal dentate gyrus. These results highlight the advantage of combining bright probes with NIR-II lasers. Our probe is a promising tool for studying the vascular dynamics of living animals and related diseases.


Assuntos
Região CA1 Hipocampal , Tomografia Computadorizada por Raios X , Animais , Corantes Fluorescentes/química , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica , Fótons
13.
J Mater Chem B ; 10(10): 1641-1649, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35194628

RESUMO

Herein, we discuss a new pyrene-based push-pull dye (PC) and our investigation of its photophysical properties and applicability to biological studies. The newly synthesized dye exhibits highly polarity-sensitive fluorescence over a significantly wide range (i.e., the green to far-red region), accompanied by high fluorescence quantum yields (ΦFL > 0.70 in most organic solvents) and superior photostability to that of the commonly used Nile Red (NR) dye, which also fluoresces in the green to red region. When human prostate cancer cells stained with PC were imaged using a confocal laser scanning fluorescence microscope, PC was found to selectively stain the lipid droplets. Under the cell conditions where the formation of droplets was inhibited, PC could be distributed to both the remaining droplets and the intercellular membranes, which could be distinguished based on the fluorescence solvatochromic function of PC. Furthermore, PC efficiently stained normal human skin tissue blocks treated with a transparency-enhancing agent and enabled clear visualization of individual cells in each tissue architecture by means of two-photon fluorescence microscopy (2PM). Interestingly, PC provides bright 2PM images under tissue-penetrative 960 nm excitation, realizing much clearer and deeper tissue imaging than conventional pyrene dyes and NR. These results suggest that PC could replace several commonly used dyes in various biological applications, particularly the rapid and accurate diagnosis of tissue diseases, typified by biopsy.


Assuntos
Corantes Fluorescentes , Pirenos , Pele , Células HeLa , Humanos , Gotículas Lipídicas , Microscopia de Fluorescência/métodos
14.
iScience ; 24(1): 101888, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33364578

RESUMO

To understand brain functions, it is important to observe directly how multiple neural circuits are performing in living brains. However, due to tissue opaqueness, observable depth and spatiotemporal resolution are severely degraded in vivo. Here, we propose an optical brain clearing method for in vivo fluorescence microscopy, termed MAGICAL (magical additive glycerol improves clear alive luminance). MAGICAL enabled two-photon microscopy to capture vivid images with fast speed, at cortical layer V and hippocampal CA1 in vivo. Moreover, MAGICAL promoted conventional confocal microscopy to visualize finer neuronal structures including synaptic boutons and spines in unprecedented deep regions, without intensive illumination leading to phototoxic effects. Fluorescence emission spectrum transmissive analysis showed that MAGICAL improved in vivo transmittance of shorter wavelength light, which is vulnerable to optical scattering, thus unsuited for in vivo microscopy. These results suggest that MAGICAL would transparentize living brains via scattering reduction.

15.
Chem Sci ; 12(18): 6333-6341, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34084431

RESUMO

The use of donor-π-acceptor (D-π-A) skeletons is an effective strategy for the design of fluorophores with red-shifted emission. In particular, the use of amino and boryl moieties as the electron-donating and -accepting groups, respectively, can produce dyes that exhibit high fluorescence and solvatochromism. Herein, we introduce a dithienophosphole P-oxide scaffold as an acceptor-spacer to produce a boryl- and amino-substituted donor-acceptor-acceptor (D-A-A) π-system. The thus obtained fluorophores exhibit emission in the near-infrared (NIR) region, while maintaining high fluorescence quantum yields even in polar solvents (e.g. λ em = 704 nm and Φ F = 0.69 in CH3CN). A comparison of these compounds with their formyl- or cyano-substituted counterparts demonstrated the importance of the boryl group for generating intense emission. The differences among these electron-accepting substituents were examined in detail using theoretical calculations, which revealed the crucial role of the boryl group in lowering the nonradiative decay rate constant by decreasing the non-adiabatic coupling in the internal conversion process. The D-A-A framework was further fine-tuned to improve the photostability. One of these D-A-A dyes was successfully used in bioimaging to visualize the blood vessels of Japanese medaka larvae and mouse brain.

16.
PLoS One ; 15(8): e0237230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764808

RESUMO

In vivo two-photon microscopy utilizing a nonlinear optical process enables, in living mouse brains, not only the visualization of morphologies and functions of neural networks in deep regions but also their optical manipulation at targeted sites with high spatial precision. Because the two-photon excitation efficiency is proportional to the square of the photon density of the excitation laser light at the focal position, optical aberrations induced by specimens mainly limit the maximum depth of observations or that of manipulations in the microscopy. To increase the two-photon excitation efficiency, we developed a method for evaluating the focal volume in living mouse brains. With this method, we modified the beam diameter of the excitation laser light and the value of the refractive index in the immersion liquid to maximize the excitation photon density at the focal position. These two modifications allowed the successful visualization of the finer structures of hippocampal CA1 neurons, as well as the intracellular calcium dynamics in cortical layer V astrocytes, even with our conventional two-photon microscopy system. Furthermore, it enabled focal laser ablation dissection of both single apical and single basal dendrites of cortical layer V pyramidal neurons. These simple modifications would enable us to investigate the contributions of single cells or single dendrites to the functions of local cortical networks.


Assuntos
Encéfalo/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Animais , Desenho de Equipamento , Feminino , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/ultraestrutura , Fótons
17.
PLoS One ; 15(1): e0227650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923215

RESUMO

In order to achieve deep tissue imaging, a number of optical clearing agents have been developed. However, in a conventional microscopy setup, an objective lens can only be moved until it is in contact with a coverslip, which restricts the maximum focusing depth into a cleared tissue specimen. Until now, it is still a fact that the working distance of a high magnification objective lens with a high numerical aperture is always about 100 µm. In this study, a polymer thin film (also called as nanosheet) composed of fluoropolymer with a thickness of 130 nm, less than one-thousandth that of a 170 µm thick coverslip, is employed to replace the coverslip. Owing to its excellent characteristics, such as high optical transparency, mechanical robustness, chemical resistance, and water retention ability, nanosheet is uniquely capable of providing a coverslip-free imaging. By wrapping the tissue specimen with a nanosheet, an extra distance of 170 µm for the movement of objective lens is obtained. Results show an equivalently high resolution imaging can be obtained if a homogenous refractive index between immersion liquid and mounting media is adjusted. This method will facilitate a variety of imaging tasks with off-the-shelf high magnification objectives.


Assuntos
Microscopia de Fluorescência/métodos , Microscopia/métodos , Lentes , Nanoestruturas , Polietileno , Refratometria
18.
Acta Histochem Cytochem ; 53(6): 131-138, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33437099

RESUMO

Two-photon, excitation fluorescent microscopy featuring autofluorescence or immunofluorescence, combined with optical clearance using a transparency-enhancing technique, allows deep imaging of three-dimensional (3D) skin structures. However, it remains difficult to obtain high-quality images of individual cells or 3D structures. We combined a new dye with a transparency-enhancing technology and performed high-quality structural analysis of human epidermal structures, especially the acrosyringium. Human fingertip skin samples were collected, formalin-fixed, embedded in both frozen and paraffin blocks, sliced, stained with propidium iodide, optically cleared using a transparency-enhancing technique, and stained with a new fluorescent, solvatochromic pyrene probe. Microscopy revealed fine skin features and detailed epidermal structures including the stratum corneum (horny layer), keratinocytes, eccrine sweat glands, and peripheral nerves. Three-dimensional reconstruction of an entire acrosyringium was possible in one sample. This new fluorescence microscopy technique yields high-quality epidermal images and will aid in histopathological analyses of skin disorders.

19.
iScience ; 23(10): 101579, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083745

RESUMO

In vivo two-photon deep imaging with a broad field of view has revealed functional connectivity among brain regions. Here, we developed a novel observation method that utilizes a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet with a thickness of ∼130 nm that exhibited a water retention effect and a hydrophilized adhesive surface. PEO-CYTOP nanosheets firmly adhered to brain surfaces, which suppressed bleeding from superficial veins. By taking advantage of the excellent optical properties of PEO-CYTOP nanosheets, we performed in vivo deep imaging in mouse brains at high resolution. Moreover, PEO-CYTOP nanosheets enabled to prepare large cranial windows, achieving in vivo imaging of neural structure and Ca2+ elevation in a large field of view. Furthermore, the PEO-CYTOP nanosheets functioned as a sealing material, even after the removal of the dura. These results indicate that this method would be suitable for the investigation of neural functions that are composed of interactions among multiple regions.

20.
Sci Rep ; 10(1): 5133, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198380

RESUMO

The therapeutic effects of C16, which is an inhibitor of RNA-dependent protein kinase (PKR), on growth of hepatocellular carcinoma (HCC) cells and tumor progression in vitro and in vivo were evaluated. Huh7 cells, a human HCC cell line, were used. The effects of C16 on cell viability were evaluated with the MTT assay, and real-time RT-PCR was performed. Huh7 cells were grafted into immunodeficient mice, and the in vivo effects of C16 on tumorigenesis were examined. C16 suppressed proliferation of HCC cells in a dose-dependent manner in vitro. Mouse models with xenograft transplantation showed that the inhibitor suppressed the growth of HCC cells in vivo. Moreover, C16 decreased angiogenesis in HCC tissue in the xenograft model. Consistent with these results in mice, transcript levels of vascular endothelial growth factor-A and factor-B, platelet-derived growth factor-A and factor-B, fibroblast growth factor-2, epidermal growth factor, and hepatocyte growth factor, which are angiogenesis-related growth factors, were significantly decreased by C16 in vitro. In conclusion, the PKR inhibitor C16 blocked tumor cell growth and angiogenesis via a decrease in mRNA levels of several growth factors. C16 may be useful in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Tiazóis/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Células Hep G2 , Fator de Crescimento de Hepatócito/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-sis/genética , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA