Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Earth Planets Space ; 73(1): 202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790028

RESUMO

The ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT (FAST) satellite at 3000-4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared to the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm-2 s-1). The slopes of relations between the Poynting fluxes and outflowing ion number fluxes show no clear dependence on the solar zenith angle. Intense ion outflow events (> 108 cm-2 s-1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature).

2.
Sci Rep ; 14(1): 2327, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282034

RESUMO

The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic 'source' populations for radiation belt simulations.

3.
Space Sci Rev ; 219(8): 80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38037569

RESUMO

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on both the Van Allen Probes spacecraft is a time-of-flight versus total energy instrument that provided ion composition data over the ring current energy (∼7 keV to ∼1 MeV), and electrons over the energy range ∼25 keV to ∼1 MeV throughout the duration of the mission (2012 - 2019). In this paper we present instrument calibrations, implemented after the Van Allen Probes mission was launched. In particular, we discuss updated rate dependent corrections, possible contamination by "accidentals" rates, and caveats concerning the use of certain products. We also provide a summary of the major advances in ring current science, obtained from RBSPICE observations, and their implications for the future of inner magnetosphere exploration.

4.
Nat Commun ; 13(1): 1611, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338136

RESUMO

Energetic electron precipitation from Earth's outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt's energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

5.
J Geophys Res Space Phys ; 119(11): 8813-8819, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26167435

RESUMO

H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3-4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5-6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. KEY POINTS: We report initial observations of ring current ionsWe show that He-ion decay rates are consistent with theoryWe show that O-ions with energies greater than 500 keV decay very rapidly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA