Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Int Microbiol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767683

RESUMO

In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.

2.
Saudi Pharm J ; 32(5): 102041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558886

RESUMO

The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.

3.
Appl Microbiol Biotechnol ; 107(11): 3763-3778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079062

RESUMO

The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.


Assuntos
Biofilmes , Fatores de Virulência , Camundongos , Animais , Fatores de Virulência/metabolismo , Doxazossina/farmacologia , Reposicionamento de Medicamentos , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo
4.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771021

RESUMO

The polar fractions of the Juniperus species are rich in bioflavonoid contents. Phytochemical study of the polar fraction of Juniperus sabina aerial parts resulted in the isolation of cupressuflavone (CPF) as the major component in addition to another two bioflavonoids, amentoflavone and robustaflavone. Biflavonoids have various biological activities, such as antioxidant, anti-inflammatory, antibacterial, antiviral, hypoglycemic, neuroprotective, and antipsychotic effects. Previous studies have shown that the metabolism and elimination of biflavonoids in rats are fast, and their oral bioavailability is very low. One of the methods to improve the bioavailability of drugs is to alter the route of administration. Recently, nose-to-brain drug delivery has emerged as a reliable method to bypass the blood-brain barrier and treat neurological disorders. To find the most effective CPF formulation for reaching the brain, three different CPF formulations (A, B and C) were prepared as self-emulsifying drug delivery systems (SEDDS). The formulations were administered via the intranasal (IN) route and their effect on the spontaneous motor activity in addition to motor coordination and balance of rats was observed using the activity cage and rotarod, respectively. Moreover, pharmacokinetic investigation was used to determine the blood concentrations of the best formulation after 12 h. of the IN dose. The results showed that formulations B and C, but not A, decreased the locomotor activity and balance of rats. Formula C at IN dose of 5 mg/kg expressed the strongest effect on the tested animals.


Assuntos
Biflavonoides , Juniperus , Ratos , Animais , Juniperus/química , Biflavonoides/farmacologia , Biflavonoides/metabolismo , Solubilidade , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo , Administração Intranasal , Atividade Motora , Disponibilidade Biológica
5.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649675

RESUMO

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361877

RESUMO

The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two ß-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the ß-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.


Assuntos
Atenolol , Fatores de Virulência , Camundongos , Animais , Atenolol/farmacologia , Atenolol/metabolismo , Fatores de Virulência/genética , Percepção de Quorum , Biofilmes , Bactérias Gram-Negativas , Pseudomonas aeruginosa , Serratia marcescens/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteus mirabilis/metabolismo , Proteínas de Bactérias/metabolismo
7.
Entropy (Basel) ; 24(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35885104

RESUMO

The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as -7.8, -8.3, and -8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes.

8.
Medicina (Kaunas) ; 58(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35334570

RESUMO

Background and Objectives: Diarrhea induced by chemotherapy may represent a life-threatening adverse effect in cancer patients receiving chemotherapy. FOLFOX, an effective treatment for colon cancer, has been associated with diarrhea with high severity, particularly with higher doses. Management of diarrhea is crucial to increase the survival of cancer patients and to improve the quality of life. Glutamine is an abundant protein peptide found in blood and has a crucial role in boosting immunity, increasing protein anabolism, and decreasing the inflammatory effects of chemotherapy on the mucosal membranes, including diarrhea. This study aimed to provide evidence that parenteral L-alanyl L-glutamine dipeptide may have a positive influence on the incidence of diarrhea, treatment response, and the overall survival in colon cancer patients treated with modified FOLFOX-6 (mFOLFOX-6). Materials and Methods: Forty-four stage II and III colon cancer patients were included in this study where they were treated with the standard colon cancer chemotherapy mFOLFOX-6 and were randomly allocated into glutamine group and placebo group, each of 22 patients. Results: L-alanyl L-glutamine dipeptide was found to be significantly effective in decreasing the frequency and severity of diarrhea when compared to the placebo group, particularly after four and six cycles of mFOLFOX-6. There was no significant difference between the studied groups regarding to the overall survival. Conclusion: L-alanyl L-glutamine dipeptide can be considered as an add-on with chemotherapy to improve the quality of life and the overall survival of colon cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo , Glutamina , Neoplasias do Colo/tratamento farmacológico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Fluoruracila/uso terapêutico , Glutamina/farmacologia , Humanos , Incidência , Leucovorina/uso terapêutico , Compostos Organoplatínicos/uso terapêutico , Qualidade de Vida
9.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202080

RESUMO

Alveolar macrophages are the first line of defense against intruding pathogens and play a critical role in cancer immunology. The Toll-like receptor (TLR) family mediates an important role in recognizing and mounting an immune response against intruding microbes. TLR-9 is a member of the intracellular TLR family, which recognizes unmethylated CG motifs from the prokaryotic genome. Upon its activation, TLR-9 triggers downstream of the MyD-88-dependent transcriptional activation of NF-κB, and subsequently results in abundant inflammatory cytokines expression that induces a profound inflammatory milieu. The present exploratory investigation aimed at elucidating the potency of schizophyllan for entrapping ODN 1826 (SPG-ODN 1826)-mediated stimulation of TLR-9 in provoking an inflammatory-type response in murine alveolar macrophages. Schizophyllan (SPG), a representative of the ß-glucan family, was used in the present study as a nanovehicle for endosomal trafficking of CpG ODN 1826. TEM analysis of SPG-ODN 1826 nanovehicles revealed that the prepared nanovehicles are spherical and have an average size of about 100 nm. Interestingly, SPG-ODN 1826 nanovehicles were competent in delivering their therapeutic payload within endosomes of murine alveolar macrophage (J774A.1) cells. Exposure of these nanovehicles within LPS stimulated J774A.1, resulted in a significant provocation of reactive oxygen species (ROS) (p < 0.01) in comparison to CpG ODN 1826 alone. Moreover, the formulated nanovehicles succeeded in generating a profound Th1-based cytokine profile constituted by enhanced expression of IFN-γ (p < 0.001) and IL-1ß (p < 0.001) inflammatory cytokines. These findings clearly indicated the immunostimulatory potential of SPG-ODN 1826 nanovehicles for inducing the Th1-type phenotype, which would certainly assist in skewing M2 phenotype into the much-desired M1 type during lung cancer.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/química , Sizofirano/química , Receptor Toll-Like 9/agonistas , Animais , Sobrevivência Celular , Citocinas/metabolismo , Endossomos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula
10.
Bioorg Med Chem Lett ; 28(9): 1595-1602, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29615345

RESUMO

Type-2 diabetes mellitus is a progressive cluster of metabolic disorders, representing a global public health burden affecting more than 366 million people worldwide. We recently reported the discovery of three series of novel agents showing balanced activity on two metabolic receptors, peroxisome proliferator activated receptor-γ (PPAR-γ) and free fatty acid receptor 1 (FFAR1), also known as GPCR40. Our designing strategy relied on linking the thiazolidinedione head with known GPCR privilege structures. To further investigate this concept, two new scaffolds, the benzhydrol- and indole-based chemotypes, were introduced here in. Our optimization campaign resulted in three compounds; 15a, 15c, and 15d, with affinities in the low micromolar range on both targets. In vivo study of selected test compounds, revealed that 15c possesses a significant anti-hyperglycemic and anti-hyperlipidemic activities superior to rosiglitazone in fat-fed animal models. Molecular docking analysis was conducted to explain the binding modes of both series. These compounds could lead to the development of the unique antidiabetic agent acting as insulin sensitizer as well as insulin secretagogue.


Assuntos
Compostos Benzidrílicos/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/agonistas , Receptores Acoplados a Proteínas G/agonistas , Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade
11.
Biol Pharm Bull ; 41(5): 811-814, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29709919

RESUMO

In previous studies we showed that the complexation hydrogels based in poly(methacrylic acid-g-ethylene glycol) [P(MAA-g-EG)] rapidly release insulin in the intestine owing to their pH-dependent complexation properties; they also exhibit a high insulin-loading efficiency, enzyme-inhibiting properties, and mucoadhesive characteristics. Cell-penetrating peptides (CPPs), such as oligoarginines [hexa-arginine (R6), comprising six arginine residues], have been employed as useful tools for the oral delivery of therapeutic macromolecules. The aim of our study was to investigate the combination strategy of using P(MAA-g-EG) hydrogels with R6-based CPPs to improve the intestinal absorption of insulin. A high efficiency of loading into crosslinked P(MAA-g-EG) hydrogels was observed for insulin (96.1±1.4%) and R6 (46.6±3.8%). In addition, immediate release of the loaded insulin and R6 from these hydrogels was observed at pH 7.4 (80% was released in approximately 30 min). Consequently, a strong hypoglycemic response was observed (approximately 18% reduction in blood glucose levels) accompanied by an improvement in insulin absorption after the co-administration of insulin-loaded particles (ILP) and R6-loaded particles (ALP) into closed rat ileal segments compared with that after ILP administration alone. These results indicate that the combination of P(MAA-g-EG) hydrogels with CPPs may be a promising strategy for the oral delivery of various insulin preparations as an alternative to conventional parenteral routes.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Portadores de Fármacos/administração & dosagem , Hidrogéis/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Oligopeptídeos/administração & dosagem , Administração Oral , Animais , Glicemia/análise , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Etilenoglicol/química , Etilenoglicol/farmacocinética , Hidrogéis/química , Hidrogéis/farmacocinética , Hipoglicemiantes/sangue , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Íleo/metabolismo , Insulina/sangue , Insulina/química , Insulina/farmacocinética , Absorção Intestinal , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ratos Wistar
12.
Pharm Res ; 34(10): 2197-2210, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28721446

RESUMO

PURPOSE: This report describes the effect of rhamnolipids (RLs) on the tight junctions (TJ) of the intestinal epithelium using the rat in-situ closed loop model. METHODS: We investigated the transport of 5 (6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-labeled dextrans with average molecular weights of 4.4 and 10 kDa (FD-4 and FD-10) when co-administered with different concentrations of RLs. Lactate dehydrogenase (LDH) leakage assay and histopathological examination of treated intestinal loops were used to assess potential toxicity of RLs. Further, the effect of kaempferol on accelerating the resealing of the tight junctions in vivo was also investigated RESULTS: Data shows that administration of different RLs concentrations (1.0-5.0% v/v) increased CF absorption through rat intestine by 2.84- and 15.82-folds with RLs concentrations of 1.0% and 5.0% v/v, respectively. RLs exhibited size-dependent increase on FD-4 and FD-10 absorption. Dosing RLs at 1.0% v/v didn't cause a significant LDH leakage or histopathological changes to intestinal mucosa compared to higher concentrations, which showed a progressive damaging effect. Using kaempferol, a natural flavonoid that stimulates the assembly of the TJs, proved to enhance the recovery of barrier properties of the intestinal mucosa treated with high concentrations of RLs (2.5% and 5% v/v). CONCLUSIONS: These results collectively illustrate the ability of RLs to enhance oral bioavailability of different molecules across the intestinal epithelial membrane in a concentration- and time-dependent fashion.


Assuntos
Glicolipídeos/metabolismo , Quempferóis/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Corantes Fluorescentes/química , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Quempferóis/administração & dosagem , Quempferóis/química , Masculino , Peso Molecular , Permeabilidade , Ratos , Ratos Wistar
13.
Mol Pharm ; 13(3): 895-906, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26751280

RESUMO

The endothelial cells lining the capillaries supplying the brain with oxygen and nutrients form a formidable barrier known as the blood-brain barrier (BBB), which exhibits selective permeability to small drug molecules and virtually impermeable to macromolecular therapeutics. Current in vitro BBB models fail to replicate this restrictive behavior due to poor integration of the endothelial cells with supporting cells (pericytes and astrocytes) following the correct anatomical organization observed in vivo. We report the coculture of mouse brain microvascular endothelial cells (b.End3), pericytes, with/without C8-D1A astrocytes in layered microfluidic channels forming three-dimensional (3D) bi- and triculture models of the BBB. The live/dead assay indicated high viability of all cultured cells up to 21 days. Trans-endothelial electrical resistance (TEER) values confirmed the formation of intact monolayers after 3 days in culture and showed statistically higher values for the triculture model compared to the single and biculture models. Screening the permeability of [(14)C]-mannitol and [(14)C]-urea showed the ability of bi- and triculture models to discriminate between different markers based on their size. Further, permeability of [(14)C]-mannitol across the triculture model after 18 days in culture matched its reported permeability across the BBB in vivo. Mathematical calculations also showed that the radius of the tight junctions pores (R) in the triculture model is similar to the reported diameter of the BBB in vivo. Finally, both the bi- and triculture models exhibited functional expression of the P-glycoprotein efflux pump, which increased with the increase in the number of days in culture. These results collectively indicate that the triculture model is a robust in vitro model of the BBB.


Assuntos
Astrócitos/citologia , Barreira Hematoencefálica , Encéfalo/citologia , Endotélio Vascular/citologia , Pericitos/citologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar , Técnicas de Cultura de Células , Permeabilidade da Membrana Celular , Técnicas de Cocultura , Endotélio Vascular/metabolismo , Técnicas In Vitro , Camundongos , Microfluídica , Pericitos/metabolismo
14.
ACS Omega ; 9(17): 19536-19547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708263

RESUMO

Pediatric pulmonary hypertension is a serious syndrome with significant morbidity and mortality. Sildenafil is widely used off-label in pediatric patients with pulmonary arterial hypertension. In this study, bile salt-stabilized nanovesicles (bilosomes) were screened for their efficacy to enhance the transdermal delivery of the phosphodiesterase type 5 inhibitor, sildenafil citrate, in an attempt to augment its therapeutic efficacy in pediatric pulmonary hypertension. A response surface methodology was implemented for fabricating and optimizing a bilosomal formulation of sildenafil (SDF-BS). The optimized SDF-BS formulation was characterized in terms of its entrapment efficiency (EE), zeta potential, vesicle size, and in vitro release profile. The optimized formula was then loaded onto hydroxypropyl methyl cellulose (HPMC) hydrogel and assessed for skin permeation, in vivo pharmacokinetics, and pharmacodynamic studies. The optimized SDF-BS showed the following characteristic features; EE of 88.7 ± 1.1%, vesicle size of 185.0 + 9.2 nm, zeta potential of -20.4 ± 1.1 mV, and efficiently sustained SDF release for 12 h. Skin permeation study revealed a remarkable improvement in SDF penetration from bilosomal gel compared to plain SDF gel. In addition, pharmacokinetic results revealed that encapsulating SDF within bilosomal vesicles significantly enhanced its systemic bioavailability (∼3 folds), compared to SDF oral suspension. In addition, pharmacodynamic investigation revealed that, compared to plain SDF gel or oral drug suspension, SDF-BS gel applied topically triggered a significant elevation (p < 0.05) in cGMP serum levels, underscoring the superior therapeutic efficacy of SDF-BS gel. Conclusively, bilosomes can be viewed as a promising nanocarrier for transdermal delivery of SDF that would grant higher therapeutic efficiency while alleviating the limitations encountered with SDF oral administration.

15.
Int J Pharm X ; 7: 100240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577618

RESUMO

Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 µg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 µg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.

16.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771977

RESUMO

Simvastatin (SMV), a cholesterol-lowering agent, has antioxidant and anti-inflammatory effects. Nevertheless, the oral use of SMV is linked with poor systemic bioavailability owing to its limited aqueous solubility and extensive first-pass metabolism. The aim of this study was to evaluate the feasibility of transdermal delivery of SMV using bile salt stabilized vesicles (bilosomes) for enhancing the anti-inflammatory potential of SMV. SMV-loaded bilosomes (SMV-BS) were prepared by the thin film hydration technique and optimized by 33 Box-Behnken design. The fabricated SMV-BS were assessed for vesicle size, entrapment efficiency (% EE) and cumulative drug release. The optimized formula was incorporated into HPMC gel and investigated for physical properties, ex vivo permeation, in vivo pharmacokinetic study and anti-inflammatory potential in inflamed paw edema rat model. The optimized SMV-BS showed vesicle size of 172.1 ± 8.1 nm and % EE of 89.2 ± 1.8%. In addition, encapsulating SMV within bilosomal vesicles remarkably sustained drug release over 12 h, compared to plain drug suspension. Furthermore, SMV-loaded bilosomal gel showed a three-fold enhancement in SMV transdermal flux, compared to plain drug suspension. Most importantly, the relative bioavailability of SMV-BS gel was ~2-fold and ~3-fold higher than those of oral SMV suspension and SMV gel, respectively. In carrageenan-induced paw edema model, SMV-BS gel induced a potent anti-inflammatory effect, as evidenced by a remarkable reduction in paw edema, which was comparable to that of the standard anti-inflammatory drug, indomethacin. Collectively, bilosomes might represent a plausible transdermal drug delivery system that could enhance the anti-inflammatory activity of SMV by boosting its skin permeation and its systemic bioavailability.

17.
Colloids Surf B Biointerfaces ; 227: 113361, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236085

RESUMO

Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes , Ratos , Animais , Atorvastatina/farmacologia , Disponibilidade Biológica , Suspensões , Ratos Wistar , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Solubilidade , Água , Tamanho da Partícula
18.
Gels ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38131938

RESUMO

The objective of the current study was to fabricate a thermosensitive in situ gelling system for the ocular delivery of carvedilol-loaded spanlastics (CRV-SPLs). In situ gel formulations were prepared using poloxamer analogs by a cold method and was further laden with carvedilol-loaded spanlastics to boost the precorneal retention of the drug. The gelation capacity, rheological characteristics, muco-adhesion force and in vitro release of various in situ gel formulations (CS-ISGs) were studied. The optimized formula (F2) obtained at 22% w/v poloxamer 407 and 5% w/v poloxamer 188 was found to have good gelation capacity at body temperature with acceptable muco-adhesion properties, appropriate viscosity at 25 °C that would ease its ocular application, and relatively higher viscosity at 37 °C that promoted prolonged ocular residence of the formulation post eye instillation and displayed a sustained in vitro drug release pattern. Ex vivo transcorneal penetration studies through excised rabbit cornea revealed that F2 elicited a remarkable (p ˂ 0.05) improvement in CRV apparent permeation coefficient (Papp = 6.39 × 10-6 cm/s) compared to plain carvedilol-loaded in situ gel (CRV-ISG; Papp = 2.67 × 10-6 cm/s). Most importantly, in normal rabbits, the optimized formula (F2) resulted in a sustained intraocular pressure reduction and a significant enhancement in the ocular bioavailability of carvedilol, as manifested by a 2-fold increase in the AUC0-6h of CRV in the aqueous humor, compared to plain CRV-ISG formulation. To sum up, the developed thermosensitive in situ gelling system might represent a plausible carrier for ophthalmic drug delivery for better management of glaucoma.

19.
Crit Rev Anal Chem ; : 1-30, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378883

RESUMO

Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.

20.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960016

RESUMO

This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol-gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit's eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA