Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Xenotransplantation ; 29(1): e12719, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935207

RESUMO

BACKGROUND: Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS: CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS: CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth ∼6 mm) than after submuscular (depth ∼15 mm) placement of the NPIs. CONCLUSIONS: Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Animais Geneticamente Modificados , Glicemia , Xenoenxertos , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos NOD , Proteína Estafilocócica A , Suínos , Transplante Heterólogo/métodos
2.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480604

RESUMO

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Assuntos
Heme Oxigenase-1/genética , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Maleatos/administração & dosagem , Maleatos/toxicidade , Pessoa de Meia-Idade , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidade , RNA Mensageiro/genética , Fatores de Tempo
3.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948057

RESUMO

Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.


Assuntos
Doença de Alzheimer/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Presenilina-1/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Adulto , Doença de Alzheimer/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Células PC12 , Ratos , Transdução de Sinais , Imagem Individual de Molécula
4.
Exp Cell Res ; 380(2): 216-233, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039347

RESUMO

Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage. The disease phenotype was confirmed by IDS enzyme and glycosaminoglycan assay. MPS II neuronal precursor cells (NPCs) showed significantly decreased self-renewal capacity, while their cortical neuronal differentiation potential was not affected. Major structural alterations in the ER and Golgi complex, accumulation of storage vacuoles, and increased apoptosis were observed both at protein expression and ultrastructural level in the MPS II neuronal cells, which was more pronounced in GFAP + astrocytes, with increased LAMP2 expression but unchanged in their RAB7 compartment. Based on these finding we hypothesize that lysosomal membrane protein (LMP) carrier vesicles have an initiating role in the formation of storage vacuoles leading to impaired lysosomal function. In conclusion, a novel human MPS II disease model was established for the first time which recapitulates the in vitro neuropathology of the disorder, providing novel information on the disease mechanism which allows better understanding of further lysosomal storage disorders and facilitates drug testing and gene therapy approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Mucopolissacaridose II/metabolismo , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Mucopolissacaridose II/patologia
5.
Arch Toxicol ; 94(7): 2435-2461, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632539

RESUMO

Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.


Assuntos
Documentação , Processamento Eletrônico de Dados/legislação & jurisprudência , Regulamentação Governamental , Testes de Toxicidade , Toxicologia/legislação & jurisprudência , Animais , Células Cultivadas , Europa (Continente) , Humanos , Formulação de Políticas , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Terminologia como Assunto , Peixe-Zebra/embriologia
6.
J Immunol ; 198(1): 239-248, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852743

RESUMO

Application of dendritic cells (DCs) to prime responses to tumor Ags provides a promising approach to immunotherapy. However, only a limited number of DCs can be manufactured from adult precursors. In contrast, pluripotent embryonic stem (ES) cells represent an inexhaustible source for DC production, although it remains a major challenge to steer directional differentiation because ES cell-derived cells are typically immature with impaired functional capacity. Consistent with this notion, we found that mouse ES cell-derived DCs (ES-DCs) represented less mature cells compared with bone marrow-derived DCs. This finding prompted us to compare the gene expression profile of the ES cell- and adult progenitor-derived, GM-CSF-instructed, nonconventional DC subsets. We quantified the mRNA level of 17 DC-specific transcription factors and observed that 3 transcriptional regulators (Irf4, Spi-B, and Runx3) showed lower expression in ES-DCs than in bone marrow-derived DCs. In light of this altered gene expression, we probed the effects of these transcription factors in developing mouse ES-DCs with an isogenic expression screen. Our analysis revealed that forced expression of Irf4 repressed ES-DC development, whereas, in contrast, Runx3 improved the ES-DC maturation capacity. Moreover, LPS-treated and Runx3-activated ES-DCs exhibited enhanced T cell activation and migratory potential. In summary, we found that ex vivo-generated ES-DCs had a compromised maturation ability and immunogenicity. However, ectopic expression of Runx3 enhances cytokine-driven ES-DC development and acts as an instructive tool for the generation of mature DCs with enhanced immunogenicity from pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Células Dendríticas/citologia , Expressão Ectópica do Gene/fisiologia , Células-Tronco Embrionárias/citologia , Animais , Western Blotting , Separação Celular , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
7.
Molecules ; 24(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336912

RESUMO

The calcium sensing receptor (CaSR) was first identified in parathyroid glands, and its primary role in controlling systemic calcium homeostasis by the regulation of parathyroid hormone (PTH) secretion has been extensively described in literature. Additionally, the receptor has also been investigated in cells and tissues not directly involved in calcium homeostasis, e.g., the nervous system (NS), where it plays crucial roles in early neural development for the differentiation of neurons and glial cells, as well as in the adult nervous system for synaptic transmission and plasticity. Advances in the knowledge of the CaSR's function in such physiological processes have encouraged researchers to further broaden the receptor's investigation in the neuro-pathological conditions of the NS. Interestingly, pre-clinical data suggest that receptor inhibition by calcilytics might be effective in counteracting the pathomechanism underlying Alzheimer's disease and ischemia, while a CaSR positive modulation with calcimimetics has been proposed as a potential approach for treating neuroblastoma. Importantly, such promising findings led to the repurposing of CaSR modulators as novel pharmacological alternatives for these disorders. Therefore, the aim of this review article is to critically appraise evidence which, so far, has been yielded from the investigation of the role of the CaSR in physiology of the nervous system and to focus on the most recent emerging concepts which have reported the receptor as a therapeutic target for neurodegeneration and neuroblastic tumors.


Assuntos
Suscetibilidade a Doenças , Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Fatores Etários , Animais , Cálcio/metabolismo , Diferenciação Celular/genética , Humanos , Terapia de Alvo Molecular , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/embriologia , Neurogênese/genética , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
8.
Adv Exp Med Biol ; 1079: 55-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29270885

RESUMO

Osteoarthritis (OA) is the most common chronic disabling condition effecting the elderly, significantly impacting an individual patient's quality of life. Current treatment options for OA are focused on pain management and slowing degradation of cartilage. Some modern surgical techniques aimed at encouraging regeneration at defect sites have met with limited long-term success. Mesenchymal stem cells (MSCs) have been viewed recently as a potential tool in OA repair due to their chondrogenic capacity. Several studies have shown success with regards to reducing patient's OA-related pain and discomfort but have been less successful in inducing chondrocyte regeneration. The heterogeneity of MSCs and their limited proliferation capacity also raises issues when developing an off-the-shelf treatment for OA. Induced pluripotent stem cell (iPSC) technology, which allows for the easy production of cells capable of prolonged self-renewal and producing any somatic cell type, may overcome those limitations. Patient derived iPSCs can also be used to gain new insight into heredity-related OA. Efforts to generate chondrocytes from iPSCs through embryoid bodies or mesenchymal intermediate stages have struggled to produce with optimal functional characteristics. However, iPSCs potential to produce cells for future OA therapies has been supported by iPSC-derived teratomas, which have shown an ability to produce functional, stable articular cartilage. Other iPSCs-chondrogenic protocols are also improving by incorporating tissue engineering techniques to better mimic developmental conditions.


Assuntos
Condrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Regeneração , Cartilagem Articular , Diferenciação Celular , Humanos
9.
Methods ; 99: 62-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26384580

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells. Although they were originally identified in bone marrow and described as 'marrow stromal cells', they have since been identified in many other anatomical locations in the body. MSCs can be isolated from bone marrow, adipose tissue, umbilical cord and other tissues but the richest tissue source of MSCs is fat. Since they are adherent to plastic, they may be expanded in vitro. MSCs have a distinct morphology and express a specific set of CD (cluster of differentiation) molecules. The phenotypic pattern for the identification of MSCs cells requires expression of CD73, CD90, and CD105 and lack of CD34, CD45, and HLA-DR antigens. Under appropriate micro-environmental conditions MSCs can proliferate and give rise to other cell types. Therefore, they are ideally suited for the treatment of systemic inflammatory and autoimmune conditions. They have also been implicated as key players in regenerating injured tissue following injury and trauma. MSC populations isolated from adipose tissue may also contain regulatory T (Treg) cells, which have the capacity for modulating the immune system. The immunoregulatory and regenerative properties of MSCs make them ideal for use as therapeutic agents in vivo. In this paper we review the literature on the identification, phenotypic characterization and biological properties of MSCs and discuss their potential for applications in cell therapy and regenerative medicine. We also discuss strategies for biomaterial micro-engineering of the stem cell niche.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Fenótipo , Regeneração , Medicina Regenerativa , Engenharia Tecidual
10.
Arch Toxicol ; 91(1): 1-33, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27492622

RESUMO

Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.


Assuntos
Modelos Biológicos , Mutagênicos/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Teratogênicos/toxicidade , Toxicologia/métodos , Alternativas aos Testes com Animais/tendências , Animais , Automação Laboratorial , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Células Cultivadas , Guias como Assunto , Ensaios de Triagem em Larga Escala/normas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutagênicos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurotoxinas/metabolismo , Medição de Risco/tendências , Teratogênicos/metabolismo , Testes de Toxicidade Aguda/normas , Toxicocinética , Toxicologia/tendências
11.
Differentiation ; 92(4): 183-194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27321088

RESUMO

Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.


Assuntos
Diferenciação Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios Colinérgicos/metabolismo , Fator de Crescimento Epidérmico/genética , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitógenos/metabolismo , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo
12.
BMC Cancer ; 16(Suppl 2): 738, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27766946

RESUMO

Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called "cancer stem cells" (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours.The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.


Assuntos
Modelos Biológicos , Células-Tronco Neoplásicas , Animais , Humanos , Camundongos , Neoplasias/fisiopatologia , Prognóstico , Transdução de Sinais
13.
BMC Cancer ; 15 Suppl 1: S1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708542

RESUMO

The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.


Assuntos
Envelhecimento/fisiologia , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia , Animais , Carcinogênese , Epigênese Genética , Humanos , Neoplasias/patologia
14.
Biol Futur ; 73(1): 31-42, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837645

RESUMO

Lysosome (L), a hydrolytic compartment of the endo-lysosomal system (ELS), plays a central role in the metabolic regulation of eukaryotic cells. Furthermore, it has a central role in the cytopathology of several diseases, primarily in lysosomal storage diseases (LSDs). Mucopolysaccharidosis II (MPS II, Hunter disease) is a rare LSD caused by idunorate-2-sulphatase (IDS) enzyme deficiency. To provide a new platform for drug development and clarifying the background of the clinically observed cytopathology, we established a human in vitro model, which recapitulates all cellular hallmarks of the disease. Some of our results query the traditional concept by which the storage vacuoles originate from the endosomal system and suggest a new concept, in which endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and RAB2/LAMP positive Golgi (G) vesicles play an initiative role in the vesicle formation. In this hypothesis, Golgi is not only an indirectly affected organelle but enforced to be the main support of vacuole formation. The purposes of this minireview are to give a simple guide for understanding the main relationships in ELS, to present the storage vacuoles and their relation to ELS compartments, to recommend an alternative model for vacuole formation, and to place the Golgi in spotlight of MPS II cytopathology.


Assuntos
Mucopolissacaridose II , Endocitose , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo , Mucopolissacaridose II/metabolismo , Vacúolos/metabolismo
15.
Front Mol Neurosci ; 14: 793769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095416

RESUMO

A large body of evidence suggests the involvement of the ATP-gated purinergic receptor P2X7 (P2X7R) in neurodegenerative diseases, including Alzheimer's disease. While it is well-described to be present and functional on microglia cells contributing to inflammatory responses, some reports suggest a neuronal expression of the receptor as well. Here, we present experimental results showing P2X7 receptors to be expressed on human hiPSC-derived microglia-like cells, hiPSC-derived neuronal progenitors and hiPSC-derived matured neuronal cells. By applying cell surface protein detection assays, we show that P2X7R is not localized on the cell membrane, despite being detected in neuronal cells and thus may not be available for directly mediating neurotoxicity. On hiPSC-derived microglia-like cells, a clear membranous expression was detected. Additionally, we have not observed differences in P2X7R functions between control and familial Alzheimer's disease patient-derived neuronal cells. Functional assays employing a P2X7R antagonist JNJ 47965567 confirm these findings by showing P2X7R-dependent modulation of microglia-like cells viability upon treatment with P2X7R agonists ATP and BzATP, while the same effect was absent from neuronal cells. Since the majority of P2X7R research was done on rodent models, our work on human hiPSC-derived cells presents a valuable contribution to the field, extending the work on animal models to the human cellular system and toward clinical translation.

16.
PeerJ ; 9: e11388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026357

RESUMO

BACKGROUND: Several pieces of evidence from in vitro studies showed that brain-derived neurotrophic factor (BDNF) promotes proliferation and differentiation of neural stem/progenitor cells (NSCs) into neurons. Moreover, the JAK2 pathway was proposed to be associated with mouse NSC proliferation. BDNF could activate the STAT-3 pathway and induce proliferation in mouse NSCs. However, its effects on proliferation are not fully understood and JAK/STAT pathway was proposed to play a role in this activity. METHODS: In the present study, the effects of BDNF on cell proliferation and neurite outgrowth of Alzheimer's disease (AD) induced pluripotent stem cells (iPSCs)-derived human neural progenitor cells (hNPCs) were examined. Moreover, a specific signal transduction pathway important in cell proliferation was investigated using a JAK2 inhibitor (AG490) to clarify the role of that pathway. RESULTS: The proliferative effect of BDNF was remarkably observed as an increase in Ki-67 positive cells. The cell number of hNPCs was significantly increased after BDNF treatment represented by cellular metabolic activity of the cells measured by MTT assay. This noticeable effect was statistically shown at 20 ng/ml of BDNF treatment. BDNF, however, did not promote neurite outgrowth but increased neuronal cell number. It was found that AG490 suppressed hNPCs proliferation. However, this inhibitor partially decreased BDNF-induced hNPCs proliferation. These results demonstrated the potential role of BDNF for the amelioration of AD through the increase of AD-derived hNPCs number.

17.
Stem Cell Reports ; 16(11): 2736-2751, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678206

RESUMO

Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.


Assuntos
Astrócitos/metabolismo , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Mutação , Animais , Astrócitos/citologia , Diferenciação Celular/genética , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Demência Frontotemporal/metabolismo , Perfilação da Expressão Gênica/métodos , Glicólise/genética , Homeostase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética
18.
Cells ; 9(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369990

RESUMO

We present a hiPSC-based 3D in vitro system suitable to test neurotoxicity (NT). Human iPSCs-derived 3D neurospheres grown in 96-well plate format were characterized timewise for 6-weeks. Changes in complexity and homogeneity were followed by immunocytochemistry and transmission electron microscopy. Transcriptional activity of major developmental, structural, and cell-type-specific markers was investigated at weekly intervals to present the differentiation of neurons, astrocytes, and oligodendrocytes. Neurospheres were exposed to different well-known toxicants with or without neurotoxic effect (e.g., paraquat, acrylamide, or ibuprofen) and examined at various stages of the differentiation with an ATP-based cell viability assay optimized for 3D-tissues. Concentration responses were investigated after acute (72 h) exposure. Moreover, the compound-specific effect of rotenone was investigated by a panel of ER-stress assay, TUNEL assay, immunocytochemistry, electron microscopy, and in 3D-spheroid based neurite outgrowth assay. The acute exposure to different classes of toxicants revealed distinct susceptibility profiles in a differentiation stage-dependent manner, indicating that hiPSC-based 3D in vitro neurosphere models could be used effectively to evaluate NT, and can be developed further to detect developmental neurotoxicity (DNT) and thus replace or complement the use of animal models in various basic research and pharmaceutical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Síndromes Neurotóxicas/diagnóstico , Esferoides Celulares/citologia , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Rotenona/toxicidade , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/ultraestrutura
19.
Front Mol Neurosci ; 13: 94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581707

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by a progressive cognitive decline associated with global brain damage. Initially, intracellular paired helical filaments composed by hyperphosphorylated tau and extracellular deposits of amyloid-ß (Aß) were postulated as the causing factors of the synaptic dysfunction, neuroinflammation, oxidative stress, and neuronal death, detected in AD patients. Therefore, the vast majority of clinical trials were focused on targeting Aß and tau directly, but no effective treatment has been reported so far. Consequently, only palliative treatments are currently available for AD patients. Over recent years, several studies have suggested the involvement of the purinergic receptor P2X7 (P2X7R), a plasma membrane ionotropic ATP-gated receptor, in the AD brain pathology. In this line, altered expression levels and function of P2X7R were found both in AD patients and AD mouse models. Consequently, genetic depletion or pharmacological inhibition of P2X7R ameliorated the hallmarks and symptoms of different AD mouse models. In this review, we provide an overview of the current knowledge about the role of the P2X7R in AD.

20.
Sci Rep ; 10(1): 22414, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376249

RESUMO

Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function. In this study we investigated whether transplantation of undifferentiated human induced pluripotent stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11) spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better functional recovery than the control rats which received only contusion injury. Morphologically, the contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the sensorimotor cortex. The extent of functional improvement was inversely related to the amount of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after spinal cord contusion injury.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Traumatismos da Medula Espinal , Nicho de Células-Tronco , Transplante de Células-Tronco , Animais , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Interleucina-10/metabolismo , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA