Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768995

RESUMO

Phospholamban (PLN) is a major regulator of cardiac contractility, and human mutations in this gene give rise to inherited cardiomyopathies. The deletion of Arginine 14 is the most-prevalent cardiomyopathy-related mutation, and it has been linked to arrhythmogenesis and early death. Studies in PLN-humanized mutant mice indicated an increased propensity to arrhythmias, but the underlying cellular mechanisms associated with R14del-PLN cardiac dysfunction in the absence of any apparent structural remodeling remain unclear. The present study addressed the specific role of myofilaments in the setting of R14del-PLN and the long-term effects of R14del-PLN in the heart. Maximal force was depressed in skinned cardiomyocytes from both left and right ventricles, but this effect was more pronounced in the right ventricle of R14del-PLN mice. In addition, the Ca2+ sensitivity of myofilaments was increased in both ventricles of mutant mice. However, the depressive effects of R14del-PLN on contractile parameters could be reversed with the positive inotropic drug omecamtiv mecarbil, a myosin activator. At 12 months of age, corresponding to the mean symptomatic age of R14del-PLN patients, contractile parameters and Ca2+ transients were significantly depressed in the right ventricular R14del-PLN cardiomyocytes. Echocardiography did not reveal any alterations in cardiac function or remodeling, although histological and electron microscopy analyses indicated subtle alterations in mutant hearts. These findings suggest that both aberrant myocyte calcium cycling and aberrant contractility remain specific to the right ventricle in the long term. In addition, altered myofilament activity is an early characteristic of R14del-PLN mutant hearts and the positive inotropic drug omecamtiv mecarbil may be beneficial in treating R14del-PLN cardiomyopathy.


Assuntos
Cardiomiopatias , Miofibrilas , Humanos , Camundongos , Animais , Miofibrilas/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Proteínas de Ligação ao Cálcio/genética , Arritmias Cardíacas/genética , Cálcio/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 316(3): H543-H553, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575436

RESUMO

Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.


Assuntos
Capsaicina/uso terapêutico , Cardiotônicos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Nociceptividade , Fármacos do Sistema Sensorial/uso terapêutico , Pele/inervação , Animais , Capsaicina/farmacologia , Cardiotônicos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Proteína Quinase C/metabolismo , Receptor B2 da Bradicinina/metabolismo , Reflexo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Fármacos do Sistema Sensorial/farmacologia
3.
J Appl Toxicol ; 39(4): 603-621, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30561030

RESUMO

Polychlorinated biphenyls (PCBs) are toxic environmental pollutants. Humans are exposed to PCB mixtures via contaminated food or water. PCB exposure causes adverse effects in adults and after exposure in utero. PCB toxicity depends on the congener mixture and CYP1A2 gene activity. For coplanar PCBs, toxicity depends on ligand affinity for the aryl hydrocarbon receptor (AHR). Previously, we found that perinatal exposure of mice to a three-coplanar/five-noncoplanar PCB mixture induced deficits in novel object recognition and trial failures in the Morris water maze in Cyp1a2-/- ::Ahrb1 C57BL6/J mice compared with wild-type mice (Ahrb1  = high AHR affinity). Here we exposed gravid Cyp1a2-/- ::Ahrb1 mice to a PCB mixture on embryonic day 10.5 by gavage and examined the F1 and F3 offspring (not F2 ). PCB-exposed F1 mice exhibited increased open-field central time, reduced acoustic startle, greater conditioned contextual freezing and reduced CA1 hippocampal long-term potentiation with no change in spatial learning or memory. F1 mice also had inhibited growth, decreased heart rate and cardiac output, and impaired fertility. F3 mice showed few effects. Gene expression changes were primarily in F1 PCB males compared with wild-type males. There were minimal RNA and DNA methylation changes in the hippocampus from F1 to F3 with no clear relevance to the functional effects. F0 PCB exposure during a period of rapid DNA de-/remethylation in a susceptible genotype produced clear F1 effects with little evidence of transgenerational effects in the F3 generation. While PCBs show clear developmental neurotoxicity, their effects do not persist across generations for effects assessed herein.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Poluentes Ambientais/toxicidade , Fertilidade/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Reflexo de Sobressalto/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Condicionamento Clássico , Citocromo P-450 CYP1A2/genética , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
4.
J Cardiovasc Pharmacol ; 72(1): 40-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688911

RESUMO

Tranilast is clinically indicated for the treatment of allergic disorders and is also a nonselective blocker of the transient receptor potential vanilloid 2 (TRPV2) channel. Previous studies have found that it has protective effects in various animal models of cardiac disease. Our laboratory has found that genetic deletion of TRPV2 results in a blunted hypertrophic response to increased afterload; thus, this study tested the hypothesis that tranilast through cardiomyocyte TRPV2 blockade can inhibit the hypertrophic response to pressure overload in vivo through transverse aortic constriction and ex vivo through isolated myocyte studies. The in vivo studies demonstrated that tranilast blunted the fibrotic response to increased afterload and, to a lesser extent, the hypertrophic response. After 4 weeks, this blunting was associated with improved cardiac function, although at 8 weeks, the cardiac function deteriorated similarly to the control group. Finally, the in vitro studies demonstrated that tranilast was not inhibiting these responses at the cardiomyocyte level. In conclusion, we demonstrated that tranilast blunting of the fibrotic and hypertrophic response occurs independently of cardiac TRPV2 channels and may be cardioprotective in the short term but not after prolonged administration.


Assuntos
Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , ortoaminobenzoatos/toxicidade
5.
Aging Clin Exp Res ; 29(5): 863-873, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27804106

RESUMO

BACKGROUND: The aging heart is characterized by cellular and molecular changes leading to a decline in physiologic function and cardiac remodeling, specifically the development of myocyte hypertrophy and fibrosis. Transient receptor potential vanilloid 2 (TRPV2), a stretch-mediated channel and regulator of calcium homeostasis, plays a key role in the function and structure of the heart. TRPV2 also plays an important role in the adaptive and maladaptive compensatory mechanisms of the heart in response to pathologic and exercise-induced stress. Our current study seeks to elucidate the potential role of TRPV2 channels in the regulation of cardiac function in aging. METHODS: Wild-type (WT) and TRPV2 functional knockout (FKO) mice were aged out to various time points, and their cardiac function was measured using advanced echocardiography. Furthermore, we histologically analyzed the heart morphology to determine myocyte hypertrophy, the development of fibrosis and the relative expression of TRPV2. RESULTS: Our results demonstrate that even though TRPV2-FKO mice have impaired function at baseline, their cardiac function as measured via standard and advanced echocardiographic parameters (ejection fraction, cardiac output and circumferential strain) decreased less with aging in comparison with the WT group. Furthermore, there was less fibrosis and hypertrophy in the TRPV2-FKO group with aging in comparison with the WT. The expression of TRPV2 in the WT group did not significantly change with aging. CONCLUSIONS: TRPV2 functional deletion is compatible with aging and associated with a decreased development of myocyte hypertrophy and fibrosis. It may be an important target for prevention of age-induced cardiac remodeling.


Assuntos
Ecocardiografia/métodos , Coração/fisiopatologia , Canais de Cátion TRPV/genética , Animais , Feminino , Fibrose , Masculino , Camundongos , Camundongos Knockout
6.
Am J Physiol Heart Circ Physiol ; 307(12): H1705-13, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25239807

RESUMO

Previous studies have demonstrated improvement of cardiac function occurs with acute consumption of a high-fat diet (HFD) after myocardial infarction (MI). However, no data exist addressing the effects of acute HFD upon the extent of injury after MI. This study investigates the hypothesis that short-term HFD, prior to infarction, protects the heart against ischemia-reperfusion (I/R) injury through NF-κB-dependent regulation of cell death pathways in the heart. Data show that an acute HFD initiates cardioprotection against MI (>50% reduction in infarct size normalized to risk region) after 24 h to 2 wk of HFD, but protection is completely absent after 6 wk of HFD, when mice are reported to develop pathophysiology related to the diet. Furthermore, cardioprotection after 24 h of HFD persists after an additional 24 h of normal chow feeding and was found to be dependent upon NF-κB activation in cardiomyocytes. This study also indicates that short-term HFD activates autophagic processes (beclin-1, LC-3) preischemia, as seen in other protective stimuli. Increases in beclin-1 and LC-3 were found to be NF-κB-dependent, and administration of chloroquine, an inhibitor of autophagy, abrogated cardioprotection. Our results support that acute high-fat feeding mediates cardioprotection against I/R injury associated with a NF-κB-dependent increase in autophagy and reduced apoptosis, as has been found for ischemic preconditioning.


Assuntos
Autofagia , Dieta Hiperlipídica , Traumatismo por Reperfusão Miocárdica/dietoterapia , NF-kappa B/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , NF-kappa B/genética
7.
Am J Physiol Heart Circ Physiol ; 306(4): H574-84, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322617

RESUMO

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2(-/-) mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2(-/-) mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca(2+) transients and sarcoplasmic reticulum Ca(2+) loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Assuntos
Canais de Cálcio/metabolismo , Coração/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Canais de Cálcio/genética , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Probenecid/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Canais de Cátion TRPV/genética , Uricosúricos/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38957358

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.

9.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746225

RESUMO

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

10.
Pharmacol Res Perspect ; 11(1): e01045, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631960

RESUMO

The recombinant monoclonal anti-cocaine antibody, h2E2, sequesters cocaine in plasma increasing concentrations more than 10-fold. The increased levels of cocaine in the plasma could have detrimental peripheral effects, particularly on the cardiovascular system. We investigated the duration and magnitude of the effect of cocaine on the rat heart, and if h2E2 could antagonize that effect. Echocardiography was used to evaluate cardiac function under isoflurane anesthesia, while a tail-cuff was used to measure blood pressure. Cocaine was delivered intravenously and the rats were continuously monitored for a total of 45 min. Echocardiography measurements were recorded every 5 min and blood pressure measurements were recorded throughout the duration of the experiment using 30-s cycles. ECG recordings were taken simultaneously with the echocardiography measurements. An increase in ejection fraction was seen after the cocaine push with the maximum change occurring at 25 min. Treatment with h2E2 1 h before the cocaine push did not have any effect on cardiac parameters. Subsequent cocaine treatment had no effect on the ejection fraction, indicating that the antibody-bound cocaine does not affect the heart. This antagonism of cocaine's effects was greatly decreased after 1 week and entirely absent after 1 month. Cocaine in the presence of h2E2 is pharmacologically inert and h2E2 may have additional clinical utility for reversing cocaine effects on the cardiovascular system.


Assuntos
Sistema Cardiovascular , Cocaína , Isoflurano , Ratos , Animais , Anticorpos , Pressão Sanguínea
11.
Br J Pharmacol ; 180(6): 685-700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484549

RESUMO

The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Probenecid/farmacologia , Probenecid/uso terapêutico , Reposicionamento de Medicamentos , Doenças Cardiovasculares/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico
12.
PLoS One ; 18(1): e0280216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652449

RESUMO

Short bouts of occlusion of blood flow can induce a preconditioning response that reduces subsequent damage from longer periods of ischemia. It has been shown that ischemic preconditioning (IPC) can be elicited remotely (RIPC) through limitation of blood flow and as recently described via only pain sensation. Non-obstructive banding (NOB) through the donning of tefillin (a box with sacred texts attached to a leather strap that is traditionally bound to the non-dominant arm of Jewish adults during morning prayers) has been shown to elicit an RIPC response at least partially through pain sensation. This study evaluated the effects of NOB on heart rate variability (HRV) dependent factors that are known to be affected by various RIPC stimuli. We recruited 30 healthy subjects and subjected them to NOB versus control and found various HRV markers associated with RIPC to be changed in the NOB group. This finding provides further evidence that tefillin, likely through NOB induced RIPC changes, may still be a viable clinical pathway to prevent and decrease the morbidity associated with ischemic events.


Assuntos
Isquemia , Precondicionamento Isquêmico , Adulto , Humanos , Frequência Cardíaca , Hemodinâmica , Dor
13.
J Mol Cell Cardiol ; 53(1): 134-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561103

RESUMO

Probenecid is a highly lipid soluble benzoic acid derivative originally used to increase serum antibiotic concentrations. It was later discovered to have uricosuric effects and was FDA approved for gout therapy. It has recently been found to be a potent agonist of transient receptor potential vanilloid 2 (TRPV2). We have shown that this receptor is in the cardiomyocyte and report a positive inotropic effect of the drug. Using echocardiography, Langendorff and isolated myocytes, we measured the change in contractility and, using TRPV2(-/-) mice, proved that the effect was mediated by TRPV2 channels in the cardiomyocytes. Analysis of the expression of Ca(2+) handling and ß-adrenergic signaling pathway proteins showed that the contractility was not increased through activation of the ß-ADR. We propose that the response to probenecid is due to activation of TRPV2 channels secondary to SR release of Ca(2+).


Assuntos
Cardiotônicos/farmacologia , Coração/efeitos dos fármacos , Probenecid/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Probenecid/administração & dosagem , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 300(2): H522-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131482

RESUMO

The role of other STAT subtypes in conferring ischemic tolerance is unclear. We hypothesized that in STAT-3 deletion alternative STAT subtypes would protect myocardial function against ischemia-reperfusion injury. Wild-type (WT) male C57BL/6 mice or mice with cardiomyocyte STAT-3 knockout (KO) underwent baseline echocardiography. Langendorff-perfused hearts underwent ischemic preconditioning (IPC) or no IPC before ischemia-reperfusion. Following ex vivo perfusion, hearts were analyzed for STAT-5 and -6 phosphorylation by Western blot analysis of nuclear fractions. Echocardiography and postequilibration cardiac performance revealed no differences in cardiac function between WT and KO hearts. Phosphorylated STAT-5 and -6 expression was similar in WT and KO hearts before perfusion. Contractile function in WT and KO hearts was significantly impaired following ischemia-reperfusion in the absence of IPC. In WT hearts, IPC significantly improved the recovery of the maximum first derivative of developed pressure (+dP/dtmax) compared with that in hearts without IPC. IPC more effectively improved end-reperfusion dP/dtmax in WT hearts compared with KO hearts. Preconditioned and nonpreconditioned KO hearts exhibited increased phosphorylated STAT-5 and -6 expression compared with WT hearts. The increased subtype activation did not improve the efficacy of IPC in KO hearts. In conclusion, baseline cardiac performance is preserved in hearts with cardiac-restricted STAT-3 deletion. STAT-3 deletion attenuates preconditioning and is not associated with a compensatory upregulation of STAT-5 and -6 subtypes. The activation of STAT-5 and -6 in KO hearts following ischemic challenge does not provide functional compensation for the loss of STAT-3. JAK-STAT signaling via STAT-3 is essential for effective IPC.


Assuntos
Precondicionamento Isquêmico Miocárdico , Fatores de Transcrição STAT/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Western Blotting , Circulação Coronária/fisiologia , Ecocardiografia , Deleção de Genes , Coração/fisiologia , Hemodinâmica/fisiologia , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/fisiologia , Fosforilação , Fator de Transcrição STAT5/fisiologia
15.
Nat Med ; 9(9): 1187-94, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12937413

RESUMO

Under conditions of iron overload, which are now reaching epidemic proportions worldwide, iron-overload cardiomyopathy is the most important prognostic factor in patient survival. We hypothesize that in iron-overload disorders, iron accumulation in the heart depends on ferrous iron (Fe2+) permeation through the L-type voltage-dependent Ca2+ channel (LVDCC), a promiscuous divalent cation transporter. Iron overload in mice was associated with increased mortality, systolic and diastolic dysfunction, bradycardia, hypotension, increased myocardial fibrosis and elevated oxidative stress. Treatment with LVDCC blockers (CCBs; amlodipine and verapamil) at therapeutic levels inhibited the LVDCC current in cardiomyocytes, attenuated myocardial iron accumulation and oxidative stress, improved survival, prevented hypotension and preserved heart structure and function. Consistent with the role of LVDCCs in myocardial iron uptake, iron-overloaded transgenic mice with cardiac-specific overexpression of the LVDCC alpha1-subunit had twofold higher myocardial iron and oxidative stress levels, as well as greater impairment in cardiac function, compared with littermate controls; LVDCC blockade was again protective. Our results indicate that cardiac LVDCCs are key transporters of iron into cardiomyocytes under iron-overloaded conditions, and potentially represent a new therapeutic target to reduce the cardiovascular burden from iron overload.


Assuntos
Canais de Cálcio/metabolismo , Cardiomiopatias/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Anlodipino/farmacologia , Animais , Transporte Biológico , Bloqueadores dos Canais de Cálcio/farmacologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Taxa de Sobrevida , Verapamil/farmacologia , Verapamil/uso terapêutico
16.
Front Physiol ; 12: 734113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867442

RESUMO

The transient receptor potential (TRP) channels have been described in almost every mammalian cell type. Several members of the Vanilloid (TRPV) subtype have been found to play important roles in modulating cardiac structure and function through Ca2+ handling in response to systemic and local mechanobiological cues. In this review, we will consider the most studied TRPV channels in the cardiovascular field; transient receptor potential vanilloid 1 as a modulator of cardiac hypertrophy; transient receptor potential vanilloid 2 as a structural and functional protein; transient receptor potential vanilloid 3 in the development of hypertrophy and myocardial fibrosis; and transient receptor potential vanilloid 4 in its roles modulating the fibrotic and functional responses of the heart to pressure overload. Lastly, we will also review the potential overlapping roles of these channels with other TRP proteins as well as the advances in translational and clinical arenas associated with TRPV channels.

17.
Prog Biophys Mol Biol ; 159: 118-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32565182

RESUMO

The transient receptor potential (TRP) ion channel family is composed of twenty-seven channel proteins that are ubiquitously expressed in the human body. The TRPV (vanilloid) subfamily has been a recent target of investigation within the cardiovascular field. TRPV1, which is sensitive to heat as well as vanilloids, is the best characterized TRPV channel and is the namesake for the subfamily that includes six members. Research into the function of TRPV2 has suggested that it plays an important role in cardiovascular function. Over the last twenty years a greater understanding of the differences among the TRPV channels has allowed for more precise experimentation and has opened various translational opportunities. TRPV2 has been found to be a both a mechanosensor and a mediator of calcium handling and has been found to play important roles in healthy and diseased cardiomyocytes. These roles have been translated into clinical studies in patients with muscular dystrophy (both agonism and antagonism) as well as in patients with cardiomyopathy and heart failure with reduced ejection fraction. Its role as a structural protein has also been elucidated, though the clinical significance of this finding has yet to be established. Despite the clinical progress that has been made there is still a need for large, prospective randomized studies with TRPV2 channel agonists and antagonists in order to bring these basic and translational science findings to the bedside.


Assuntos
Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Distrofias Musculares/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Fenômenos Biomecânicos/fisiologia , Cardiomiopatias/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Descoberta de Drogas , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Humanos , Transdução de Sinais
18.
Sci Rep ; 11(1): 10378, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001975

RESUMO

Congenital heart disease (CHD) is the most common congenital abnormality. A precise etiology for CHD remains elusive, but likely results from interactions between genetic and environmental factors during development, when the heart adapts to physiological and pathophysiological conditions. Further, it has become clearer that early exposure to toxins that do not result in overt CHD may be associated with adverse cardiac outcomes that are not manifested until later life. Previously, interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, was shown to cause structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. Here, we show that continuous exposure to TCDD from fertilization throughout adulthood caused male mice to underperform at exercise tolerance tests compared to their control and female counterparts, confirming previous observations of a sexually dimorphic phenotype. Renin-angiotensin stimulation by angiotensin II (Ang II) caused measurable increases in blood pressure and left ventricle mass, along with decreased end diastolic volume and preserved ejection fraction. Interestingly, TCDD exposure caused measurable reductions in the myocardial hypertrophic effects of Ang II, suggesting that endogenous AHR signaling present in adulthood may play a role in the pathogenesis of hypertrophy. Overall, the findings reported in this pilot study highlight the complex systems underlying TCDD exposure in the development of cardiac dysfunction in later life.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Cardiopatias Congênitas/genética , Coração/crescimento & desenvolvimento , Hipertrofia/genética , Receptores de Hidrocarboneto Arílico/genética , Angiotensina II/farmacologia , Animais , Dioxinas/toxicidade , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Poluentes Ambientais/toxicidade , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/fisiopatologia , Humanos , Hipertrofia/induzido quimicamente , Hipertrofia/fisiopatologia , Masculino , Camundongos , Condicionamento Físico Animal/efeitos adversos , Projetos Piloto , Dibenzodioxinas Policloradas/toxicidade , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética , Caracteres Sexuais
19.
Cardiovasc Toxicol ; 21(11): 889-900, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324134

RESUMO

Complete vascular occlusion to distant tissue prior to an ischemic cardiac event can provide significant cardioprotection via remote ischemic preconditioning (RIPC). Despite understanding its mechanistic basis, its translation to clinical practice has been unsuccessful, likely secondary to the inherent impossibility of predicting (and therefore preconditioning) an ischemic event, as well as the discomfort that is associated with traditional, fully occlusive RIPC stimuli. Our laboratory has previously shown that non-occlusive banding (NOB) via wrapping of a leather band (similar to a traditional Jewish ritual) can elicit an RIPC response in healthy human subjects. This study sought to further the pain-mediated aspect of this observation in a mouse model of NOB with healthy mice that were exposed to treatment with and without lidocaine to inhibit pain sensation prior to ischemia/reperfusion injury. We demonstrated that NOB downregulates key inflammatory markers resulting in a preconditioning response that is partially mediated via pain sensation.


Assuntos
Anestésicos Locais/farmacologia , Membro Anterior/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Lidocaína/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Artéria Radial/fisiologia , Animais , Citocinas/sangue , Citocinas/genética , Modelos Animais de Doenças , Ecocardiografia , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Artéria Radial/diagnóstico por imagem , Fluxo Sanguíneo Regional , Fatores de Tempo
20.
J Pers Med ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204946

RESUMO

The inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA