Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(43): 21834-21842, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597741

RESUMO

Episodic memories hinge upon our ability to process a wide range of multisensory information and bind this information into a coherent, memorable representation. On a neural level, these 2 processes are thought to be supported by neocortical alpha/beta desynchronization and hippocampal theta/gamma synchronization, respectively. Intuitively, these 2 processes should couple to successfully create and retrieve episodic memories, yet this hypothesis has not been tested empirically. We address this by analyzing human intracranial electroencephalogram data recorded during 2 associative memory tasks. We find that neocortical alpha/beta (8 to 20 Hz) power decreases reliably precede and predict hippocampal "fast" gamma (60 to 80 Hz) power increases during episodic memory formation; during episodic memory retrieval, however, hippocampal "slow" gamma (40 to 50 Hz) power increases reliably precede and predict later neocortical alpha/beta power decreases. We speculate that this coupling reflects the flow of information from the neocortex to the hippocampus during memory formation, and hippocampal pattern completion inducing information reinstatement in the neocortex during memory retrieval.


Assuntos
Hipocampo/fisiologia , Memória Episódica , Neocórtex/fisiologia , Vias Neurais , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Nat Hum Behav ; 7(11): 1968-1979, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798368

RESUMO

The hippocampus is an essential hub for episodic memory processing. However, how human hippocampal single neurons code multi-element associations remains unknown. In particular, it is debated whether each hippocampal neuron represents an invariant element within an episode or whether single neurons bind together all the elements of a discrete episodic memory. Here we provide evidence for the latter hypothesis. Using single-neuron recordings from a total of 30 participants, we show that individual neurons, which we term episode-specific neurons, code discrete episodic memories using either a rate code or a temporal firing code. These neurons were observed exclusively in the hippocampus. Importantly, these episode-specific neurons do not reflect the coding of a particular element in the episode (that is, concept or time). Instead, they code for the conjunction of the different elements that make up the episode.


Assuntos
Memória Episódica , Humanos , Hipocampo/fisiologia , Neurônios/fisiologia
3.
Nat Hum Behav ; 6(10): 1430-1439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35726055

RESUMO

Human thought is highly flexible, achieved by evolving patterns of brain activity across groups of cells. Neuroscience aims to understand cognition in the brain by analysing these intricate patterns. We argue that this goal is impeded by the time format of our data-clock time. The brain is a system with its own dynamics and regime of time, with no intrinsic concern for the human-invented second. Here, we present the Brain Time Toolbox, a software library that retunes electrophysiology data in line with oscillations that orchestrate neural patterns of cognition. These oscillations continually slow down, speed up and undergo abrupt changes, introducing a disharmony between the brain's internal regime and clock time. The toolbox overcomes this disharmony by warping the data to the dynamics of coordinating oscillations, setting oscillatory cycles as the data's new time axis. This enables the study of neural patterns as they unfold in the brain, aiding neuroscientific enquiry into dynamic cognition. In support of this, we demonstrate that the toolbox can reveal results that are absent in a default clock time format.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Eletrofisiologia , Software
4.
Elife ; 112022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448671

RESUMO

Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here, we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.


Assuntos
Memória Episódica , Humanos
5.
Nat Commun ; 12(1): 7048, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857748

RESUMO

Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm, predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show that rhythmicity can be observed in behavioral responses from memory tasks, where participants indicate, using button presses, the timing of encoding and recall of cue-object associative memories. We find no evidence for rhythmicity in button presses for visual tasks using the same stimuli, or for questions about already retrieved objects. The oscillations for correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intracranial EEG recordings, we show that the memory task induces temporally extended phase consistency in hippocampal local field potentials at slow theta frequencies, but significantly more for remembered than forgotten trials, providing a potential mechanistic underpinning for the theta oscillations found in behavioral responses.


Assuntos
Hipocampo/fisiologia , Rememoração Mental/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Ritmo Teta/fisiologia , Adulto , Sinais (Psicologia) , Eletrocorticografia , Feminino , Voluntários Saudáveis , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Periodicidade , Tempo de Reação/fisiologia
6.
Front Psychol ; 11: 607070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488465

RESUMO

Sleep strengthens memories by repeatedly reactivating associated neuron ensembles. Our studies show that although long-term memory for a medium number of word-pairs (160) benefits from sleep, a large number (320) does not. This suggests an upper limit to the amount of information that has access to sleep-dependent declarative memory consolidation, which is possibly linked to the availability of reactivation opportunities. Due to competing processes of global forgetting that are active during sleep, we hypothesized that even larger amounts of information would enhance the proportion of information that is actively forgotten during sleep. In the present study, we aimed to induce such forgetting by challenging the sleeping brain with vast amounts of to be remembered information. For this, 78 participants learned a very large number of 640 word-pairs interspersed with periods of quiet awake rest over the course of an entire day and then either slept or stayed awake during the night. Recall was tested after another night of regular sleep. Results revealed comparable retention rates between the sleep and wake groups. Although this null-effect can be reconciled with the concept of limited capacities available for sleep-dependent consolidation, it contradicts our hypothesis that sleep would increase forgetting compared to the wake group. Additional exploratory analyses relying on equivalence testing and Bayesian statistics reveal that there is evidence against sleep having a detrimental effect on the retention of declarative memory at high information loads. We argue that forgetting occurs in both wake and sleep states through different mechanisms, i.e., through increased interference and through global synaptic downscaling, respectively. Both of these processes might scale similarly with information load.

7.
Front Psychol ; 9: 2164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483185

RESUMO

Dreams and psychosis share several important features regarding symptoms and underlying neurobiology, which is helpful in constructing a testable model of, for example, schizophrenia and delirium. The purpose of the present communication is to discuss two major concepts in dreaming and psychosis that have received much attention in the recent literature: insight and dissociation. Both phenomena are considered functions of higher order consciousness because they involve metacognition in the form of reflective thought and attempted control of negative emotional impact. Insight in dreams is a core criterion for lucid dreams. Lucid dreams are usually accompanied by attempts to control the dream plot and dissociative elements akin to depersonalization and derealization. These concepts are also relevant in psychotic illness. Whereas insightfulness can be considered innocuous in lucid dreaming and even advantageous in psychosis, the concept of dissociation is still unresolved. The present review compares correlates and functions of insight and dissociation in lucid dreaming and psychosis. This is helpful in understanding the two concepts with regard to psychological function as well as neurophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA