RESUMO
Copper tolerance and SO2 tolerance are two well-studied phenotypic traits of Saccharomyces cerevisiae. The genetic bases of these traits are the allelic expansion at the CUP1 locus and reciprocal translocation at the SSU1 locus, respectively. Previous work identified a negative association between SO2 and copper tolerance in S. cerevisiae wine yeasts. Here we probe the relationship between SO2 and copper tolerance and show that an increase in CUP1 copy number does not always impart copper tolerance in S. cerevisiae wine yeast. Bulk-segregant QTL analysis was used to identify variance at SSU1 as a causative factor in copper sensitivity, which was verified by reciprocal hemizygosity analysis in a strain carrying 20 copies of CUP1. Transcriptional and proteomic analysis demonstrated that SSU1 over-expression did not suppress CUP1 transcription or constrain protein production and provided evidence that SSU1 over-expression induced sulfur limitation during exposure to copper. Finally, an SSU1 over-expressing strain exhibited increased sensitivity to moderately elevated copper concentrations in sulfur-limited medium, demonstrating that SSU1 over-expression burdens the sulfate assimilation pathway. Over-expression of MET 3/14/16, genes upstream of H2S production in the sulfate assimilation pathway increased the production of SO2 and H2S but did not improve copper sensitivity in an SSU1 over-expressing background. We conclude that copper and SO2 tolerance are conditional traits in S. cerevisiae and provide evidence of the metabolic basis for their mutual exclusivity. These findings suggest an evolutionary driver for the extreme amplification of CUP1 observed in some yeasts.
Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cobre/metabolismo , Dióxido de Enxofre/análise , Dióxido de Enxofre/metabolismo , Proteômica , Vinho/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/análise , Sulfatos/metabolismo , Metalotioneína/genéticaRESUMO
The higher alcohols 2-phenylethanol, tryptophol, and tyrosol are a group of yeast-derived compounds that have been shown to affect the aroma and flavour of fermented beverages. Five variants of the industrial wine strain AWRI796, previously isolated due to their elevated production of the 'rose-like aroma' compound 2-phenylethanol, were characterised during pilot-scale fermentation of a Chardonnay juice. We show that these variants not only increase the concentration of 2-phenylethanol but also modulate the formation of the higher alcohols tryptophol, tyrosol, and methionol, as well as other volatile sulfur compounds derived from methionine, highlighting the connections between yeast nitrogen and sulfur metabolism during fermentation. We also investigate the development of these compounds during wine storage, focusing on the sulfonation of tryptophol. Finally, the sensory properties of wines produced using these strains were quantified at two time points, unravelling differences produced by biologically modulating higher alcohols and the dynamic changes in wine flavour over aging.
Assuntos
Álcoois/análise , Odorantes/análise , Paladar , Vinho/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Compostos Orgânicos Voláteis/análiseRESUMO
Chardonnay, being the predominant white wine-grape cultivar in the Australian wine sector, is subject to widely varying winemaking processes with the aim of producing a variety of wine styles. Therefore, juice composition might not always be ideal for optimal fermentation outcomes. Our aim was to better understand the composition of Chardonnay juice and how compositional parameters impact on fermentation outcomes. This was achieved through a survey of 96 commercially prepared Chardonnay juices during the 2009 vintage. Common juice variables were estimated using near infrared spectroscopy, and elemental composition was determined using radial view inductively coupled plasma optical emission spectrometry. The influence of elemental composition on fermentation outcomes was assessed by fermentation of a defined medium formulated to reflect the composition and range of concentrations as determined by the juice survey. Yeast (Saccharomyces cerevisiae) strain effects were also assessed. Key parameters influencing fermentation outcomes were verified by laboratory scale fermentation of Chardonnay juice. This exploration of Chardonnay juice identified interactions between juice pH and potassium concentration as key factors impacting on fermentation performance and wine quality. Outcomes differed depending on yeast strain.
Assuntos
Saccharomyces cerevisiae/metabolismo , Vitis/química , Vitis/microbiologia , Vinho/análise , Vinho/microbiologia , Ácido Acético , Austrália , Meios de Cultura/química , Fermentação , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Cinética , Potássio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Hydrogen sulfide (H2S) is a powerful aroma compound largely produced by yeast during fermentation. Its occurrence in wines and other fermented beverages has been associated with off-odors described as rotten egg and/or sewage. While the formation of hydrogen sulfide (H2S) during fermentation has been extensively studied, it is the final H2S content of wine that is actually linked to potential off-odors. Nevertheless, factors determining final H2S content of wine have received little attention, and it is commonly assumed that high H2S-forming fermentations will result in high final concentrations of H2S. However, a clear relationship has never been established. In this report, we investigated the contribution of yeast strain and nitrogen addition to H2S formation during fermentation and its consequent occurrence the resulting wines. Five commercial Saccharomyces cerevisiae wine yeast strains were used to ferment a Chardonnay juice containing 110 mg/l of YAN (yeast assimilable nitrogen), supplemented with di-ammonium phosphate (DAP) to increase YAN concentration to moderate (260 mg/l) and high (410 mg/l) levels. In contrast to the widely reported decrease in H2S production in response to DAP addition, a non-linear relationship was found such that moderate DAP supplementation resulted in a remarkable increase in H2S formation by each of the five wine yeasts. H2S content of the finished wine was affected by yeast strain, YAN, and fermentation vigor. However, we did not observe a correlation between concentration of H2S in the finished wines and H2S produced during fermentation, with low-forming fermentations often having relatively high final H2S and vice versa. Management of H2S in wine through nitrogen supplementation requires knowledge of initial YAN and yeast H2S characteristics.
Assuntos
Fermentação , Sulfeto de Hidrogênio/análise , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Microbiologia de Alimentos , Odorantes/análise , Fosfatos/metabolismoRESUMO
To successfully complete malolactic fermentation (MLF), Oenococcus oeni must overcome wine stress conditions of low pH, high ethanol, and the presence of SO2. Failure to complete MLF may result in detrimental effects to the quality and stability of the resulting wines. Research efforts to date have focused on elucidating the mechanisms and genetic features that confer the ability to withstand low pH and high ethanol concentrations on O. oeni; however, the responses to SO2 stress are less well defined. This study focused on characterizing the transcriptional response of O. oeni to SO2 challenge during cultivation in a continuous system at wine-like pH (3.5). This experimental design allowed the precise discrimination of transcriptional changes linked to SO2 stress from responses associated with growth stage and cultivation parameters. Differential gene expression analysis revealed major transcriptional changes following SO2 exposure and suggested that this compound primarily interacts with intracellular proteins, DNA, and the cell envelope of O. oeni. The molecular chaperone hsp20, which has a demonstrated function in the heat, ethanol, and acid stress response, was highly upregulated, confirming its additional role in the response of this species to SO2 stress. This work also reports the first nanopore-based complete genome assemblies for O. oeni. IMPORTANCE Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni, a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO2, an antiseptic and antioxidant compound regularly used in winemaking. Understanding the physiological changes induced in O. oeni by SO2 stress is essential for the development of more robust starter cultures and methods for their use. This study describes the main transcriptional changes induced by SO2 stress in the wine bacterium O. oeni and provides foundational understanding on how this compound interacts with the cellular components and the induced protective mechanisms of this species.
Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Malatos/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Sulfitos/metabolismo , Membrana Celular/metabolismo , Dano ao DNA/genética , Etanol/análise , Fermentação , Genoma Bacteriano/genética , Proteínas de Choque Térmico HSP20/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Estresse Fisiológico/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética , Vinho/microbiologiaRESUMO
When a wine yeast is inoculated into grape juice the potential variation in juice composition that confronts it is huge. Assessing the performance characteristics of the many commercially available wine yeasts in the many possible grape juice compositions is a daunting task. To this end we have developed a barcoded Saccharomyces cerevisiae wine yeast collection to facilitate the task of performance assessment that will contribute to a broader understanding of genotype-phenotype relations. Barcode sequencing of mixed populations is used to monitor strain abundance in different grape juices and grape juice-like environments. Choice of DNA extraction method is shown to affect strain-specific barcode count in this highly related set of S. cerevisiae strains; however, the analytical approach is shown to be robust toward strain dependent variation in DNA extraction efficiency. Of the 38 unique compositional variables assessed, resistance to copper and SO2 are found to be dominant discriminatory factors in wine yeast performance. Finally, a comparison of competitive fitness profile with performance in single inoculum fermentations reveal strain dependent correspondence of yeast performance using these two different approaches.
Assuntos
Código de Barras de DNA Taxonômico , Meio Ambiente , Fermentação , Aptidão Genética , Saccharomyces cerevisiae/genética , Vitis , Vinho , Austrália , Perfilação da Expressão GênicaRESUMO
Humans have been consuming wines for more than 7000 yr . For most of this time, fermentations were presumably performed by strains of Saccharomyces cerevisiae that naturally found their way into the fermenting must . In contrast, most commercial wines are now produced by inoculation with pure yeast monocultures, ensuring consistent, reliable and reproducible fermentations, and there are now hundreds of these yeast starter cultures commercially available. In order to thoroughly investigate the genetic diversity that has been captured by over 50 yr of commercial wine yeast development and domestication, whole genome sequencing has been performed on 212 strains of S. cerevisiae, including 119 commercial wine and brewing starter strains, and wine isolates from across seven decades. Comparative genomic analysis indicates that, despite their large numbers, commercial strains, and wine strains in general, are extremely similar genetically, possessing all of the hallmarks of a population bottle-neck, and high levels of inbreeding. In addition, many commercial strains from multiple suppliers are nearly genetically identical, suggesting that the limits of effective genetic variation within this genetically narrow group may be approaching saturation.