RESUMO
OBJECTIVES: The mucin MUC1, best known for providing an epithelial barrier, is an important protective host factor in both humans and mice during Helicobacter pylori pathogenesis. This study aimed to identify the long-term consequences of MUC1 deficiency on H. pylori pathogenesis and the mechanism by which MUC1 protects against H. pylori gastritis. DESIGN: Wildtype and Muc1(-/-) mice were infected for up to 9â months, and the gastric pathology, immunological response and epigenetic changes assessed. The effects of MUC1 on the inflammasome, a potent inflammatory pathway, were examined in macrophages and H. pylori-infected mice deficient in both MUC1 and inflammasome components. RESULTS: Muc1(-/-) mice began to die 6â months after challenge, indicating Muc1 deficiency made H. pylori a lethal infection. Surprisingly, chimaeric mouse infections revealed MUC1 expression by haematopoietic-derived immune cells limits H. pylori-induced gastritis. Gastritis in infected Muc1(-/-) mice was associated with elevated interleukin (IL)-1ß and epigenetic changes in their gastric mucosa similar to those in transgenic mice overexpressing gastric IL-1ß, implicating MUC1 regulation of an inflammasome. In support of this, infected Muc1(-/-)Casp1(-/-) mice did not develop severe gastritis. Further, MUC1 regulated Nlrp3 expression via an nuclear factor (NF)-κB-dependent pathway and reduced NF-κB pathway activation via inhibition of IRAK4 phosphorylation. The importance of this regulation was proven using Muc1(-/-)Nlrp3(-/-) mice, which did not develop severe gastritis. CONCLUSIONS: MUC1 is an important, previously unidentified negative regulator of the NLRP3 inflammasome. H. pylori activation of the NLRP3 inflammasome is normally tightly regulated by MUC1, and loss of this critical regulation results in the development of severe pathology.
Assuntos
Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/patogenicidade , Inflamassomos/metabolismo , Mucina-1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1/genética , Metilação de DNA , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/patologia , Expressão Gênica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Mucina-1/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Fatores de Tempo , Fator Trefoil-2/genéticaRESUMO
Mitochondrial complex I (CI) deficiency is the most common mitochondrial enzyme defect in humans. Treatment of mitochondrial disorders is currently inadequate, emphasizing the need for experimental models. In humans, mutations in the NDUFS6 gene, encoding a CI subunit, cause severe CI deficiency and neonatal death. In this study, we generated a CI-deficient mouse model by knockdown of the Ndufs6 gene using a gene-trap embryonic stem cell line. Ndufs6(gt/gt) mice have essentially complete knockout of the Ndufs6 subunit in heart, resulting in marked CI deficiency. Small amounts of wild-type Ndufs6 mRNA are present in other tissues, apparently due to tissue-specific mRNA splicing, resulting in milder CI defects. Ndufs6(gt/gt) mice are born healthy, attain normal weight and maturity, and are fertile. However, after 4 mo in males and 8 mo in females, Ndufs6(gt/gt) mice are at increased risk of cardiac failure and death. Before overt heart failure, Ndufs6(gt/gt) hearts show decreased ATP synthesis, accumulation of hydroxyacylcarnitine, but not reactive oxygen species (ROS). Ndufs6(gt/gt) mice develop biventricular enlargement by 1 mo, most pronounced in males, with scattered fibrosis and abnormal mitochondrial but normal myofibrillar ultrastructure. Ndufs6(gt/gt) isolated working heart preparations show markedly reduced left ventricular systolic function, cardiac output, and functional work capacity. This reduced energetic and functional capacity is consistent with a known susceptibility of individuals with mitochondrial cardiomyopathy to metabolic crises precipitated by stresses. This model of CI deficiency will facilitate studies of pathogenesis, modifier genes, and testing of therapeutic approaches.
Assuntos
Cardiomiopatias/genética , Doenças Mitocondriais/genética , Mutagênese Insercional , NADH Desidrogenase/genética , Splicing de RNA , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Coração/fisiopatologia , Humanos , Técnicas In Vitro , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , NADH Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid ß-oxidation.
Assuntos
Elementos de DNA Transponíveis , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/enzimologia , Mitocôndrias/enzimologia , Mutação , NAD/metabolismo , Animais , Sítios de Ligação , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Doença de Leigh/fisiopatologia , Metabolômica/métodos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , NAD/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteômica/métodos , Splicing de RNA/genéticaRESUMO
Due to increased reliance on glycolysis, which produces lactate, monocarboxylate transporters (MCTs) are often upregulated in cancer. MCT4 is associated with the export of lactic acid from cancer cells under hypoxia, so inhibition of MCT4 may lead to cytotoxic levels of intracellular lactate. In addition, tumor-derived lactate is known to be immunosuppressive, so MCT4 inhibition may be of interest for immuno-oncology. At the outset, no potent and selective MCT4 inhibitors had been reported, but a screen identified a triazolopyrimidine hit, with no close structural analogues. Minor modifications to the triazolopyrimidine were made, alongside design of a constrained linker and broad SAR exploration of the biaryl tail to improve potency, physical properties, PK, and hERG. The resulting clinical candidate 15 (AZD0095) has excellent potency (1.3 nM), MCT1 selectivity (>1000×), secondary pharmacology, clean mechanism of action, suitable properties for oral administration in the clinic, and good preclinical efficacy in combination with cediranib.
Assuntos
Antineoplásicos , Neoplasias , Simportadores , Humanos , Ácido Láctico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Hipóxia , Transportadores de Ácidos MonocarboxílicosRESUMO
Refsum disease is caused by a deficiency of phytanoyl-CoA hydroxylase (PHYH), the first enzyme of the peroxisomal alpha-oxidation system, resulting in the accumulation of the branched-chain fatty acid phytanic acid. The main clinical symptoms are polyneuropathy, cerebellar ataxia, and retinitis pigmentosa. To study the pathogenesis of Refsum disease, we generated and characterized a Phyh knockout mouse. We studied the pathological effects of phytanic acid accumulation in Phyh(-/-) mice fed a diet supplemented with phytol, the precursor of phytanic acid. Phytanic acid accumulation caused a reduction in body weight, hepatic steatosis, and testicular atrophy with loss of spermatogonia. Phenotype assessment using the SHIRPA protocol and subsequent automated gait analysis using the CatWalk system revealed unsteady gait with strongly reduced paw print area for both fore- and hindpaws and reduced base of support for the hindpaws. Histochemical analyses in the CNS showed astrocytosis and up-regulation of calcium-binding proteins. In addition, a loss of Purkinje cells in the cerebellum was observed. No demyelination was present in the CNS. Motor nerve conduction velocity measurements revealed a peripheral neuropathy. Our results show that, in the mouse, high phytanic acid levels cause a peripheral neuropathy and ataxia with loss of Purkinje cells. These findings provide important insights in the pathophysiology of Refsum disease.
Assuntos
Ataxia/patologia , Células de Purkinje/patologia , Doença de Refsum/patologia , Animais , Ataxia/enzimologia , Ataxia/fisiopatologia , Automação , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Suplementos Nutricionais , Modelos Animais de Doenças , Marcha/efeitos dos fármacos , Marcação de Genes , Vetores Genéticos , Lipidoses/enzimologia , Lipidoses/patologia , Masculino , Camundongos , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Ácido Fitânico/sangue , Fitol/administração & dosagem , Fitol/farmacologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/enzimologia , Doença de Refsum/enzimologia , Doença de Refsum/fisiopatologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/enzimologia , Espermatogônias/patologiaRESUMO
Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen-free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function.
Assuntos
Carnitina , Clostridiales/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal , Substância Branca/metabolismo , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , CamundongosRESUMO
Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.