Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 179(2): 287-289, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585075

RESUMO

Animals use their sense of taste to evaluate the quality and safety of food before ingestion. In this issue of Cell, Zhang and colleagues provide a comprehensive exploration into the elusive mechanisms underlying sour detection.


Assuntos
Paladar , Língua , Animais , Encéfalo
2.
Cell ; 151(3): 645-57, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101631

RESUMO

Neural regulation of energy expenditure is incompletely understood. By genetically disrupting GABAergic transmission in a cell-specific fashion, and by combining this with selective pharmacogenetic activation and optogenetic mapping techniques, we have uncovered an arcuate-based circuit that selectively drives energy expenditure. Specifically, mice lacking synaptic GABA release from RIP-Cre neurons have reduced energy expenditure, become obese and are extremely sensitive to high-fat diet-induced obesity, the latter due to defective diet-induced thermogenesis. Leptin's ability to stimulate thermogenesis, but not to reduce feeding, is markedly attenuated. Acute, selective activation of arcuate GABAergic RIP-Cre neurons, which monosynaptically innervate PVH neurons projecting to the NTS, rapidly stimulates brown fat and increases energy expenditure but does not affect feeding. Importantly, this response is dependent upon GABA release from RIP-Cre neurons. Thus, GABAergic RIP-Cre neurons in the arcuate selectively drive energy expenditure, contribute to leptin's stimulatory effect on thermogenesis, and protect against diet-induced obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético , Neurônios GABAérgicos/metabolismo , Vias Neurais , Tecido Adiposo Marrom/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Dieta , Integrases/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
3.
Nature ; 595(7869): 695-700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262177

RESUMO

Agouti-related peptide (AGRP)-expressing neurons are activated by fasting-this causes hunger1-4, an aversive state that motivates the seeking and consumption of food5,6. Eating returns AGRP neuron activity towards baseline on three distinct timescales: rapidly and transiently following sensory detection of food cues6-8, slowly and longer-lasting in response to nutrients in the gut9,10, and even more slowly and permanently with restoration of energy balance9,11. The rapid regulation by food cues is of particular interest as its neurobiological basis and purpose are unknown. Given that AGRP neuron activity is aversive6, the sensory cue-linked reductions in activity could function to guide behaviour. To evaluate this, we first identified the circuit mediating sensory cue inhibition and then selectively perturbed it to determine function. Here, we show that a lateral hypothalamic glutamatergic â†’ dorsomedial hypothalamic GABAergic (γ-aminobutyric acid-producing)12 → AGRP neuron circuit mediates this regulation. Interference with this circuit impairs food cue inhibition of AGRP neurons and, notably, greatly impairs learning of a sensory cue-initiated food-acquisition task. This is specific for food, as learning of an identical water-acquisition task is unaffected. We propose that decreases in aversive AGRP neuron activity6 mediated by this food-specific circuit increases the incentive salience13 of food cues, and thus facilitates the learning of food-acquisition tasks.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Sinais (Psicologia) , Alimentos , Fome/fisiologia , Vias Neurais , Neurônios/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
4.
Mol Psychiatry ; 28(4): 1622-1635, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577844

RESUMO

Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.


Assuntos
Anorexia Nervosa , Anorexia , Camundongos , Humanos , Animais , Anorexia/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Anorexia Nervosa/metabolismo , Neurônios/metabolismo , Ingestão de Alimentos
5.
Cell ; 139(2): 416-27, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837040

RESUMO

Behavioral expression of food-associated memory in fruit flies is constrained by satiety and promoted by hunger, suggesting an influence of motivational state. Here, we identify a neural mechanism that integrates the internal state of hunger and appetitive memory. We show that stimulation of neurons that express neuropeptide F (dNPF), an ortholog of mammalian NPY, mimics food deprivation and promotes memory performance in satiated flies. Robust appetitive memory performance requires the dNPF receptor in six dopaminergic neurons that innervate a distinct region of the mushroom bodies. Blocking these dopaminergic neurons releases memory performance in satiated flies, whereas stimulation suppresses memory performance in hungry flies. Therefore, dNPF and dopamine provide a motivational switch in the mushroom body that controls the output of appetitive memory.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Neuropeptídeos/fisiologia , Receptores de Neuropeptídeos/fisiologia , Animais , Comportamento Apetitivo , Comportamento Animal , Condicionamento Clássico , Dopamina/fisiologia , Memória , Motivação , Corpos Pedunculados/fisiologia
6.
Nature ; 545(7655): 477-481, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514446

RESUMO

In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.


Assuntos
Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Transcriptoma , Animais , Biomarcadores/análise , Channelrhodopsins , Canais de Cloreto/metabolismo , Canais de Cloreto/efeitos da radiação , Colecistocinina/análise , Colecistocinina/genética , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Taquicininas/análise , Taquicininas/genética , Vigília/fisiologia , Vigília/efeitos da radiação
7.
Nature ; 507(7491): 238-42, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24487620

RESUMO

Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Fome/fisiologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/deficiência , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Mapeamento Encefálico , Rastreamento de Células , Clozapina/análogos & derivados , Clozapina/farmacologia , Dependovirus/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Privação de Alimentos , Fome/efeitos dos fármacos , Integrases/metabolismo , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Vírus da Raiva/genética , Resposta de Saciedade/fisiologia , Hormônio Liberador de Tireotropina/metabolismo
8.
Nature ; 492(7429): 433-7, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23103875

RESUMO

Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the ß-adrenergic-like OCTß2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.


Assuntos
Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Octopamina/metabolismo , Recompensa , Transdução de Sinais , Animais , Comportamento Apetitivo/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Motivação/efeitos dos fármacos , Motivação/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Octopamina/farmacologia , Receptores de Neurotransmissores/deficiência , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Paladar/efeitos dos fármacos , Paladar/fisiologia
9.
J Neurosci ; 36(36): 9268-82, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605603

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand-G-protein-coupled receptor interactions, leading to coarse temporal dynamics. In this review we will provide a brief overview of DREADDs, their implementation, and the advantages and disadvantages of their use in animal systems. We also will provide numerous examples of their use across a broad variety of biomedical research fields.


Assuntos
Comportamento/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Desenho de Fármacos , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
10.
Nature ; 537(7622): 626-7, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680936
11.
Proc Natl Acad Sci U S A ; 111(36): 13193-8, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157144

RESUMO

Activation of melanocortin-4 receptors (MC4Rs) restrains feeding and prevents obesity; however, the identity, location, and axonal projections of the neurons bearing MC4Rs that control feeding remain unknown. Reexpression of MC4Rs on single-minded 1 (SIM1)(+) neurons in mice otherwise lacking MC4Rs is sufficient to abolish hyperphagia. Thus, MC4Rs on SIM1(+) neurons, possibly in the paraventricular hypothalamus (PVH) and/or amygdala, regulate food intake. It is unknown, however, whether they are also necessary, a distinction required for excluding redundant sites of action. Hence, the location and nature of obesity-preventing MC4R-expressing neurons are unknown. Here, by deleting and reexpressing MC4Rs from cre-expressing neurons, establishing both necessity and sufficiency, we demonstrate that the MC4R-expressing neurons regulating feeding are SIM1(+), located in the PVH, glutamatergic and not GABAergic, and do not express oxytocin, corticotropin-releasing hormone, vasopressin, or prodynorphin. Importantly, these excitatory MC4R-expressing PVH neurons are synaptically connected to neurons in the parabrachial nucleus, which relays visceral information to the forebrain. This suggests a basis for the feeding-regulating effects of MC4Rs.


Assuntos
Comportamento Alimentar , Glutamatos/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Sinapses/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peso Corporal , Dependovirus/metabolismo , Metabolismo Energético , Neurônios GABAérgicos/metabolismo , Deleção de Genes , Injeções , Integrases/metabolismo , Camundongos , Neuropeptídeos/metabolismo , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Técnicas Estereotáxicas , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R41-54, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491097

RESUMO

The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.


Assuntos
Febre/metabolismo , Hipotermia/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Temperatura Cutânea , Sensação Térmica , Animais , Modelos Animais de Doenças , Encefalinas/genética , Encefalinas/metabolismo , Febre/genética , Febre/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Genótipo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotermia/genética , Hipotermia/fisiopatologia , Integrases/genética , Integrases/metabolismo , Sítios Internos de Entrada Ribossomal , Masculino , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Núcleos Parabraquiais/fisiopatologia , Fenótipo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
13.
Synapse ; 69(9): 461-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126768

RESUMO

Mechanisms of energy balance were first examined using very powerful neuroscience techniques such as lesions and electrical stimulation. This early work identified the hypothalamus as a key structure involved in hunger and feeding; however, neural resolution of cell-defined populations contributing to appetite regulation remained elusive. Recent innovations in neuroscience have produced constructs that allow for a high degree of specificity in loss- and gain-of-function manipulations in molecularly circumscribed neural subsets as well as monosynaptic circuit mapping and in vivo neurophysiology. These complimentary techniques have provided researchers an unprecedented amount of empirical agility. As a result, cell populations in two subregions of the hypothalamus have emerged as key players in the physiological control of feeding behavior. The arcuate nucleus of the hypothalamus and the paraventricular nucleus of the hypothalamus contain neural populations that have a direct role in the promotion of hunger and satiety. These include neurons that express agouti-related peptide, pro-opiomelanocortin, single-minded homolog 1 protein, and the melanocortin-4 receptor. This review focuses on how these neural subsets communicate with one another, link up to build elaborate networks, and ultimately contribute to alterations in food intake. The continuing advancement of neuroscience tools, as well as a multimodal integration of findings, will be critical in illuminating an exhaustive and clinically relevant hunger circuit.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Fome/fisiologia , Neurônios/fisiologia , Saciação/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Humanos , Vias Neurais/fisiologia , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/metabolismo
14.
Curr Biol ; 34(4): R155-R157, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412828

RESUMO

Satiety-promoting neurons of the hindbrain have long been known for their role in meal termination. An innovative new study now reveals how different hindbrain cell types mediate appetite on distinct timescales.


Assuntos
Apetite , Ingestão de Alimentos , Apetite/fisiologia , Saciação , Rombencéfalo , Neurônios
15.
Trends Endocrinol Metab ; 34(4): 191-193, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841699

RESUMO

Calculating and selecting what sensory and homeostatic requirements to attend to at any given time is vital for animals' survival. Tang et al. uncovered a circuit emanating from excitatory cortical neurons that transmit nociceptive information via the hypothalamus to blunt appetite during periods of chronic pain.


Assuntos
Apetite , Fome , Animais , Fome/fisiologia , Dor , Hipotálamo , Neurônios/fisiologia
16.
Neuron ; 111(18): 2899-2917.e6, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37442130

RESUMO

Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.


Assuntos
Hipotálamo , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Fome/fisiologia , Região Hipotalâmica Lateral/fisiologia
17.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961449

RESUMO

Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicating synaptic afferents to AgRP neurons. To investigate, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons in mice predicts 21 afferent subtypes in the mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons (TrhArc), which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TrhArc neurons inhibits AgRP neurons and decreases feeding in an AgRP neuron-dependent manner. Silencing TrhArc neurons increases feeding and body weight and reduces liraglutide's satiating effects. Our results thus demonstrate a widely applicable method for molecular connectomics, reveal the molecular organization of AgRP neuron afferents, and shed light on a neurocircuit through which GLP-1RAs suppress appetite.

18.
Nat Metab ; 4(7): 836-847, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879462

RESUMO

The overconsumption of highly caloric and palatable foods has caused a surge in obesity rates in the past half century, thereby posing a healthcare challenge due to the array of comorbidities linked to heightened body fat accrual. Developing treatments to manage body weight requires a grasp of the neurobiological basis of appetite. In this Review, we discuss advances in neuroscience that have identified brain regions and neural circuits that coordinate distinct phases of eating: food procurement, food consumption, and meal termination. While pioneering work identified several hypothalamic nuclei to be involved in feeding, more recent studies have explored how neuronal populations beyond the hypothalamus, such as the mesolimbic pathway and nodes in the hindbrain, interconnect to modulate appetite. We also examine how long-term exposure to a calorically dense diet rewires feeding circuits and alters the response of motivational systems to food. Understanding how the nervous system regulates eating behaviour will bolster the development of medical strategies that will help individuals to maintain a healthy body weight.


Assuntos
Apetite , Comportamento Alimentar , Apetite/fisiologia , Peso Corporal , Dieta , Comportamento Alimentar/fisiologia , Humanos , Obesidade
19.
Cell Metab ; 34(2): 285-298.e7, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108515

RESUMO

The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic ß cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to ß cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate ß cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in ß cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with ß cells in mice to regulate insulin secretion, and their function is necessary for the ß cell response to hypoglycemia.


Assuntos
Células Secretoras de Insulina , Animais , Hipotálamo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
20.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507386

RESUMO

Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.


Assuntos
Regulação do Apetite , Apetite , Animais , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/fisiologia , Camundongos , Neurônios/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA