Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36645906

RESUMO

Synaptic devices that emulate synchronized memory and processing are considered the core components of neuromorphic computing systems for the low-power implementation of artificial intelligence. In this regard, electrolyte-gated transistors (EGTs) have gained much scientific attention, having a similar working mechanism as the biological synapses. Moreover, compared to a traditional solid-state gate dielectric, the liquid dielectric has the key advantage of inducing extremely large modulation of carrier density while overcoming the problem of electric pinholes, that typically occurs when using large-area films gated through ultra-thin solid dielectrics. Herein we demonstrate a three-terminal synaptic transistor based on ruthenium-doped cobalt ferrite (CRFO) thin films by electrolyte gating. In the CRFO-based EGT, we have obtained multilevel non-volatile conductance states for analog computing and high-density storage. Furthermore, the proposed synaptic transistor exhibited essential synaptic behavior, including spike amplitude-dependent plasticity, spike duration-dependent plasticity, long-term potentiation, and long-term depression successfully by applying electrical pulses. This study can motivate the development of advanced neuromorphic devices that leverage simultaneous modulation of electrical and magnetic properties in the same device and show a new direction to synaptic electronics.

2.
Nano Lett ; 21(5): 2010-2017, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617255

RESUMO

Complementary to bulk synthesis, here we propose a designer lattice with extremely high magnetic frustration and demonstrate the possible realization of a quantum spin liquid state from both experiments and theoretical calculations. In an ultrathin (111) CoCr2O4 slice composed of three triangular and one kagome cation planes, the absence of a spin ordering or freezing transition is demonstrated down to 0.03 K, in the presence of strong antiferromagnetic correlations in the energy scale of 30 K between Co and Cr sublattices, leading to the frustration factor of ∼1000. Persisting spin fluctuations are observed at low temperatures via low-energy muon spin relaxation. Our calculations further demonstrate the emergence of highly degenerate magnetic ground states at the 0 K limit, due to the competition among multiply altered exchange interactions. These results collectively indicate the realization of a proximate quantum spin liquid state on the synthetic lattice.

3.
Nano Lett ; 19(3): 1625-1631, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30735619

RESUMO

Localization arguments forbid the appearance of a metallic ground state in two dimensions. Yet, a large variety of disordered superconductors are known to manifest an anomalous metal phase in the zero temperature limit. While previous observations were confined to noncrystalline "dirty" superconductors, the recent observation of the so-called Bose metal phase in crystalline thin flakes of NbSe2 has sparked off intense debate. While the exact nature of this phase remains unknown, it is thought that quantum fluctuations play a decisive role in Bose metal physics. In this work, we study the response of the anomalous metal phase in thin flakes of NbSe2 to dissipative coupling. We evince a dramatic quenching of the Bose metal phase when dissipative coupling is strong, fully restoring a zero resistance superconducting state in the entire region of the magnetic field (H)-temperature (T) phase diagram where the Bose metal phase is otherwise observed. The suppression of the Bose metal phase by dissipative coupling is possible only in a quantum system where dissipation can directly affect system thermodynamics. Our observation of a dissipative phase transition in two-dimensional NbSe2 firmly establishes the quantum nature of the anomalous metal phase in this class of "clean" superconductors.

4.
J Phys Condens Matter ; 35(28)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731168

RESUMO

Recently,Bi1Te1has been proved to be a dual topological insulator (TI), a new subclass of symmetry-protected topological phases, and predicted to be higher order topological insulator (HOTI). Being a dual TI (DTI), Bi1Te1is said to host quasi-1D surface states (SSs) due to weak TI phase and topological crystalline insulating SSs at the same time. On the other hand, HOTI supports topologically protected hinge states. So,Bi1Te1is a unique platform to study the electrical signature of topological SS (TSS) of fundamentally different origins. Though there is a report of magneto-transport measurements on large-scale Bi1Te1thin films, the Bi1Te1single crystal is not studied experimentally to date. Even the doping effect in a DTI Bi1Te1is missing in the literature. In this regard, we performed the perpendicular and parallel field magneto-transport measurement on the exfoliated microflake of Bi1Te1and Sb-doped Bi1Te1single crystals, grown by the modified Bridgmann method. Ourmetallicsample shows the weak anti-localization behavior analyzed by the multi-channel Hikami-Larkin-Nagaoka equation. We observed the presence of a pair of decoupled TSS. Further, we extracted the dephasing index (ß) from temperature (T)-dependence of phase coherence length (Lϕ), following the power law equation (Lϕ∝T-ß). The thickness-dependent value ofßindicates the transition in the dephasing mechanism from electron-electron to electron-phonon interaction with the increase in thickness, indicating the enhancement in the strength of bulk-surface coupling. Sb-doped system shows weakened bulk-surface coupling, hinted by the reduced dephasing indices.

5.
J Phys Condens Matter ; 35(12)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36623321

RESUMO

We report the temperature-dependent structural characterization of type-II Dirac semimetal NiTe2in the form of a bulk single crystal and a nanoflake (200 nm thick). Detailed x-ray diffraction study along with Rietveld refinement analysis reveals superior crystallinity and linear thermal expansion coefficient (αT) of 5.56 × 10-6and 22.5 × 10-6K-1along a or b and c lattice directions, respectively. Temperature evolution of Raman spectra shows non-linear variations in the phonon frequency and full-width half maxima of the out-of-plane A1gand in-plane Egmodes. Raman mode E2g1, corresponding to an in-plane vibration, disappears on decreasing the thickness from bulk to nanoflake. Quantitative analysis with anharmonic model yields dominating electron-phonon interaction over phonon-phonon interaction mediated by three- and four-phonon processes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37883988

RESUMO

Intrinsic magnetic topological insulators (MTI) host exotic topological phases such as quantized anomalous Hall insulating phase, arising due to the large magnetic exchange gap. However, the interplay of magnetism and topology in these systems in different temperature regimes remains elusive. In this work, we present the logarithmic temperature-dependence of conductivity for sub-100 nm thick exfoliated flakes of MTI MnBi2Te4 in the presence of out-of-plane magnetic fields and extracted the linear slope, κ. We observed a characteristic change, ∆κ ∼ -0.5 in the low-temperature regime, indicating the gapped Dirac surface state according to Lu-Shen theory. We also report the recovery of topological properties in the system via the weak-antilocalization (WAL) effect in the vicinity of antiferromagnetic to paramagnetic transition and in the paramagnetic regime. Hikami-Larkin-Nagaoka (HLN) analysis suggested the presence of topological surface states. Therefore, our study helps in understanding how intrinsic magnetism masks topological properties in an MTI as long as magnetic ordering persists. .

7.
J Phys Condens Matter ; 34(16)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35105826

RESUMO

We report the stoichiometric epitaxial growth of the Eu2Ir2O7(111) thin film on YSZ substrate by a two-step solid phase epitaxy (SPE) method. An optimized post-annealing environment of the SPE was superior over the conventional air annealing procedure to get rid of the typical impurity phase, Eu2O3. The thickness-dependent structural study on Eu2Ir2O7(111) thin films suggests a systematic control of Ir/Eu stoichiometry in our films, which is otherwise difficult to achieve. In addition, the low-temperature electrical resistivity studies strongly support the claim. The power-law dependence analysis of the resistivity data exhibits a power exponent of 0.52 in 50 nm sample suggesting possible disorder-driven semimetallic charge transport in the 3D Weyl semimetallic (WSM) candidate Eu2Ir2O7. In addition, the all-in-all-out/all-out-all-in antiferromagnetic domains of Ir4+sublattice is verified using the field cooled magnetoresistance measurements at 2 K. Hall resistivity analysis indicate semimetallic hole carrier type dominance near the Fermi level up to the measured temperature range of 2-120 K. Altogether, our study reveals the ground state of stoichiometric Eu2Ir2O7(111) thin film, with an indirect tuning of the off-stoichiometry using thickness of the samples, which is of interest in the search of the predicted 3D WSM phase.

8.
J Nanosci Nanotechnol ; 9(9): 5406-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19928233

RESUMO

Iron nanoparticles are embedded in multiwall carbon nanotubes by the chemical vapor deposition, where benzene and ferrocene are taken as precursor materials. Varying quantity of iron particles are embedded in these tubes by taking different amount of ferrocene. These particles exhibit a magnetic moment up to 98 emu/g and an enhanced coercivity in the range of 500-2000 Oe. Negative magnetoresistance approximately 10% is observed in the presence of magnetic field up to 11 T applied at various temperatures in the range of 1.3 K-300 K. It is argued that the enhanced coercivity is due to the shape anisotropy. The negative magnetoresistance is believed to be due to the weak localization and spin dependent scattering of electrons by the ferromagnetic particles. In addition we also observe a dependence of the magnetoresistance on the direction of applied field and this is correlated with the shape anisotropy of the Fe particles.


Assuntos
Ferro , Nanotubos de Carbono , Anisotropia , Ferro/química , Magnetismo , Nanotubos de Carbono/química , Temperatura
9.
Sci Rep ; 8(1): 7890, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29760416

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
ACS Nano ; 12(12): 12665-12672, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30475585

RESUMO

The combination of superconductivity and spin-momentum locking at the interface between an s-wave superconductor and a three-dimensional topological insulator (3D-TI) is predicted to generate exotic p-wave topological superconducting phases that can host Majorana Fermions. However, large bulk conductivities of previously investigated 3D-TI samples and Fermi level mismatches between 3D bulk superconductors and 2D topological surface states have thwarted significant progress. Here, we employ bulk-insulating topological insulators in proximity with two-dimensional superconductor NbSe2 assembled via van der Waals epitaxy. Experimentally measured differential conductance yields unusual features including a double-gap spectrum, an intrinsic asymmetry that vanishes with small in-plane magnetic fields, and differential conductance ripples at biases significantly larger than the superconducting gap. We explain our results on the basis of proximity-induced superconductivity of topological surface states, while also considering possibilities of topologically trivial superconductivity arising from Rashba-type surface states. Our work demonstrates the possibility of obtaining p-wave superconductors by proximity effects on bulk-insulating TIs.

11.
J Phys Condens Matter ; 30(31): 315801, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29893716

RESUMO

The emergence of exchange bias effect in Fe3O4 thin films has been since attributed to the presence of anti phase boundary (APB) growth defects despite lack of direct experimental evidence. In the present report, APB induced anomalous weak ferromagnetism and exchange bias property of single-phase antiferromagnetic (AFM) system LuMn0.5Fe0.5O3 (LMFO) is discussed and 57Fe Mössbauer spectroscopy and high resolution transmission electron microscopy (HRTEM) measurements are used to probe the origin of the observed effect. In addition to the sextet component corresponding to the long range AFM ordering, the measured Mössbauer spectra reveal the presence of a small component (10%-12%) near zero velocity with unusually small internal field. This indicates the presence of APB defects. From micro structural investigations using HRTEM, presence of APB type defects and dislocations are confirmed. In addition to the exchange bias effect, upon field cooling, hysteresis loop exhibits large vertical shift due to strong pinning effect of the APB. Finally we further annealed the optimally sintered sample LMFO and studied the evolution of defects, and their influence on weak ferromagnetism and exchange bias properties. Our present experimental findings may pave the way in creating new functionalities in materials using APB-type growth defects.

12.
Sci Rep ; 7(1): 6919, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761051

RESUMO

We report zero-field-cooled spontaneous-positive and field-cooled conventional-negative exchange bias effects in epitaxial bilayer composed of La0.7Sr0.3MnO3 (LSMO) with ferromagnetic (FM) and Eu0.45Sr0.55MnO3 (ESMO) with A-type antiferromagnetic (AF) heterostructures respectively. A temperature dependent magnetization study of LSMO/ESMO bilayers grown on SrTiO3 (001) manifest FM ordering (TC) of LSMO at ~320 K, charge/orbital ordering of ESMO at ~194 K and AF ordering (TN) of ESMO at ~150 K. The random field Ising model has demonstrated an interesting observation of inverse dependence of exchange bias effect on AF layer thickness due to the competition between FM-AF interface coupling and AF domain wall energy. The isothermally field induced unidirectional exchange anisotropy formed at the interface of FM-LSMO layer and the kinetically phase-arrested magnetic phase obtained from the metamagnetic AF-ESMO layer could be responsible for the spontaneous exchange bias effect. Importantly, no magnetic poling is needed, as necessary for the applications. The FM-AF interface exchange interaction has been ascribed to the AF coupling with [Formula: see text] ([Formula: see text], coupling constant between AF spins) for the spontaneous positive hysteresis loop shift, and the field-cooled conventional exchange bias has been attributed to the ferromagnetically exchanged interface with [Formula: see text] (coupling constant between FM spins).

13.
Sci Rep ; 7(1): 4567, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676658

RESUMO

We present our angle resolved photoelectron spectroscopy (ARPES) and density functional theory results on quaternary topological insulator (TI) BiSbTe1.25Se1.75 (BSTS) confirming the non-trivial topology of the surface state bands (SSBs) in this compound. We find that the SSBs, which are are sensitive to the atomic composition of the terminating surface have a partial 3D character. Our detailed study of the band bending (BB) effects shows that in BSTS the Dirac point (DP) shifts by more than two times compared to that in Bi2Se3 to reach the saturation. The stronger BB in BSTS could be due to the difference in screening of the surface charges. From momentum density curves (MDCs) of the ARPES data we obtained an energy dispersion relation showing the warping strength of the Fermi surface in BSTS to be intermediate between those found in Bi2Se3 and Bi2Te3 and also to be tunable by controlling the ratio of chalcogen/pnictogen atoms. Our experiments also reveal that the nature of the BB effects are highly sensitive to the exposure of the fresh surface to various gas species. These findings have important implications in the tuning of DP in TIs for technological applications.

14.
Rev Sci Instrum ; 87(2): 023906, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931865

RESUMO

We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces.

15.
Sci Rep ; 4: 5588, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24998440

RESUMO

Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices [corrected].

16.
J Phys Condens Matter ; 26(1): 016002, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24275331

RESUMO

It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.


Assuntos
Cobalto/química , Vidro/química , Lantânio/química , Fenômenos Magnéticos , Imãs/química , Nêutrons , Óxidos/química , Estrôncio/química , Modelos Químicos , Transição de Fase
17.
J Phys Condens Matter ; 24(24): 245602, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22627115

RESUMO

We report the temperature and magnetic field dependence of the conductivity of multiwall carbon nanotube mat in the temperature range 1.4-150 K and in magnetic fields up to 10 T. It is observed that charge transport in this system is governed by Mott's variable-range hopping of three-dimensional type in the higher temperature range and two-dimensional type in the lower temperature range. Mott's various parameters, such as localization length, hopping length, hopping energy and density of states at the Fermi level are deduced from the variable-range hopping fit. The resistance of the sample decreases with the magnetic field applied in the direction of tube axis of the nanotubes. The magnetic field gives rise to delocalization of states with the well-known consequence of a decrease in Mott's T0 parameter in variable-range hopping. The application of magnetic field lowers the crossover temperature at which three-dimensional variable-range hopping turns to two-dimensional variable-range hopping. The conductivity on the lower temperature side is governed by the weak localization giving rise to positive magnetoconductance. Finally, a magnetic field-temperature diagram is proposed showing different regions for different kinds of transport mechanism.

18.
J Phys Condens Matter ; 22(29): 295701, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21399316

RESUMO

Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T(c) superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T(c) in Y Ba(2)Cu(3)O(7 - δ)/La(0.5)Sr(0.5)CoO(3) bilayers are observed to be much lower than in the Y Ba(2)Cu(3)O(7 - δ)/La(0.7)Sr(0.3)MnO(3) ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.

19.
J Phys Condens Matter ; 22(2): 026005, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21386269

RESUMO

Gadolinium strontium manganite single crystals of the composition Gd(0.5)Sr(0.5)MnO(3) were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance ∼10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd(0.5)Sr(0.5)MnO(3) is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H(up), the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H(up) values below ∼20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.

20.
J Phys Condens Matter ; 22(34): 346006, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21403271

RESUMO

Two distinct ferromagnetic phases of LaMn(0.5)Co(0.5)O(3) having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature T(c) is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn-O-Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in T(c). Raman scattering suggests the presence of spin-phonon coupling for both the phases around the T(c). Electrical transport properties of both the phases have been investigated based on the lattice distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA