RESUMO
Reported here is the reactivity of mesoionic 1,3-dithiolium-4-olates towards strained alkynes, leading to thiophene cycloaddition products. In the process, the potential of these dipoles towards orthogonal reaction with azides, allowing efficient double ligation reactions, was discovered. A versatile process to access benzo[c]thiophenes, in an unprecedented divergent fashion, was developed and provides a new entry to unconventional polyaromatic thiophenes.
RESUMO
We report the discovery of a new bioorthogonal click-and-release reaction involving iminosydnones and strained alkynes. This transformation leads to two products resulting from the ligation and fragmentation of iminosydnones under physiological conditions. Optimized iminosydnones were successfully used to design innovative cleavable linkers for protein modification, thus opening up new areas in the fields of drug release and target-fishing applications. This click-and-release technology offers the possibility of exchanging tags on proteins for functionalized cyclooctynes under mild and bioorthogonal conditions.
RESUMO
We describe herein a molecular design to generate circularly polarized thermally activated delayed fluorescence emitters in which chiral bicarbazole donors are connected to acceptor units via a rigid 8-membered cycle and how the nature of the donor and acceptor units affect the photophysical and chiroptical properties.
Assuntos
Carbazóis/química , Corantes , FluorescênciaRESUMO
A novel nanohybrid catalyst was developed by assembling copper ferrite nanoparticles on carbon nanotubes. The supramolecular catalyst was applied to the one-pot azidation/1,3-dipolar cycloaddition of various substrates, at room temperature, and in an aqueous medium. The nanohybrid could also be recycled and reused by means of magnetic recovery.