Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 54(3): 176-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27707803

RESUMO

BACKGROUND: Triple A syndrome (MIM #231550) is associated with mutations in the AAAS gene. However, about 30% of patients with triple A syndrome symptoms but an unresolved diagnosis do not harbour mutations in AAAS. OBJECTIVE: Search for novel genetic defects in families with a triple A-like phenotype in whom AAAS mutations are not detected. METHODS: Genome-wide linkage analysis, whole-exome sequencing and functional analyses were used to discover and verify a novel genetic defect in two families with achalasia, alacrima, myopathy and further symptoms. Effect and pathogenicity of the mutation were verified by cell biological studies. RESULTS: We identified a homozygous splice mutation in TRAPPC11 (c.1893+3A>G, [NM_021942.5], g.4:184,607,904A>G [hg19]) in four patients from two unrelated families leading to incomplete exon skipping and reduction in full-length mRNA levels. TRAPPC11 encodes for trafficking protein particle complex subunit 11 (TRAPPC11), a protein of the transport protein particle (TRAPP) complex. Western blot analysis revealed a dramatic decrease in full-length TRAPPC11 protein levels and hypoglycosylation of LAMP1. Trafficking experiments in patient fibroblasts revealed a delayed arrival of marker proteins in the Golgi and a delay in their release from the Golgi to the plasma membrane. Mutations in TRAPPC11 have previously been described to cause limb-girdle muscular dystrophy type 2S (MIM #615356). Indeed, muscle histology of our patients also revealed mild dystrophic changes. Immunohistochemically, ß-sarcoglycan was absent from focal patches. CONCLUSIONS: The identified novel TRAPPC11 mutation represents an expansion of the myopathy phenotype described before and is characterised particularly by achalasia, alacrima, neurological and muscular phenotypes.


Assuntos
Insuficiência Adrenal/genética , Acalasia Esofágica/genética , Mutação/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Insuficiência Adrenal/epidemiologia , Insuficiência Adrenal/fisiopatologia , Criança , Consanguinidade , Acalasia Esofágica/epidemiologia , Acalasia Esofágica/fisiopatologia , Éxons/genética , Feminino , Homozigoto , Humanos , Masculino , Linhagem , Sítios de Splice de RNA/genética , Turquia/epidemiologia
2.
Sci Total Environ ; 643: 632-639, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958165

RESUMO

Knowledge on the sorption behavior of cationic organic substances in aquatic systems is vital for their risk assessment due to the increasing detection of such chemicals in the hydrosphere. Their sorption behavior is strongly influenced by sorption processes onto mineral surfaces (e.g., oxides, clays). To contribute to the development of prediction tools, the impact of sorbent characteristics on the sorption strength was studied in a highly-idealized model system. In addition to the properties of the solid phase, the concentration of other ions in direct competition for sorption sites and the molecular structure of the sorbate were changed to separate ion exchange and non-ion exchange processes. The study includes in total 120 systematic column experiments using five extensively characterized synthetic oxides (three silica gels, two aluminum oxides), three probe molecules (two structurally related cationic substances, one neutral compound), and four distinctively different NaCl concentrations. The results show that the concentration of OH groups on the sorbent surface is a meaningful descriptor for the observed variations in sorption capacity onto different oxides. Compound-specific linear correlations were obtained, enabling the prediction of sorption coefficients. In addition, a more complex sorption behavior of organic cations compared to uncharged molecules were observed as demonstrated by the sorption results at different electrolyte concentrations. Thus, the study provides an important step towards a better principal mechanistic understanding of organic cation sorption. However, further work using other sorbents including natural ones and other probe molecules is needed to verify the identified relationships within the scope of developing reliable prediction models for cation sorption.

3.
J Colloid Interface Sci ; 484: 229-236, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27619382

RESUMO

The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed.

4.
Water Res ; 54: 273-83, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24584001

RESUMO

Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.


Assuntos
Compostos Inorgânicos/química , Metoprolol/isolamento & purificação , Sílica Gel/química , Água/química , Adsorção , Técnicas de Cultura Celular por Lotes , Cátions , Concentração de Íons de Hidrogênio , Modelos Lineares , Metoprolol/química , Modelos Teóricos , Análise de Regressão , Soluções , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA