Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(14): 2835-2843, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511621

RESUMO

Activation of a silent gene cluster in Streptomyces nodosus leads to synthesis of a cinnamoyl-containing non-ribosomal peptide (CCNP) that is related to skyllamycins. This novel CCNP was isolated and its structure was interrogated using mass spectrometry and nuclear magnetic resonance spectroscopy. The isolated compound is an oxidised skyllamycin A in which an additional oxygen atom is incorporated in the cinnamoyl side-chain in the form of an epoxide. The gene for the epoxide-forming cytochrome P450 was identified by targeted disruption. The enzyme was overproduced in Escherichia coli and a 1.43 Å high-resolution crystal structure was determined. This is the first crystal structure for a P450 that forms an epoxide in a substituted cinnamoyl chain of a lipopeptide. These results confirm the proposed functions of P450s encoded by biosynthetic gene clusters for other epoxidized CCNPs and will assist investigation of how epoxide stereochemistry is determined in these natural products.


Assuntos
Sistema Enzimático do Citocromo P-450 , Depsipeptídeos , Streptomyces , Sistema Enzimático do Citocromo P-450/química , Peptídeos Cíclicos/química
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732102

RESUMO

Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.


Assuntos
Sistema Enzimático do Citocromo P-450 , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Relação Estrutura-Atividade , Domínio Catalítico , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Cristalografia por Raios X , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/química , Modelos Moleculares , Humanos , Ligação Proteica , Especificidade por Substrato , Ligantes , Conformação Proteica
3.
J Biol Chem ; 298(4): 101746, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189143

RESUMO

AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can "pull" substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.


Assuntos
Anfotericina B , Proteínas de Bactérias , Streptomyces , Anfotericina B/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Streptomyces/química , Streptomyces/enzimologia , Especificidade por Substrato
4.
EMBO Rep ; 22(8): e52785, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224201

RESUMO

Unveiling the molecular mechanisms of tissue remodelling following injury is imperative to elucidate its regenerative capacity and aberrant repair in disease. Using different omics approaches, we identified enhancer of zester homolog 2 (EZH2) as a key regulator of fibrosis in injured lung epithelium. Epithelial injury drives an enrichment of nuclear transforming growth factor-ß-activated kinase 1 (TAK1) that mediates EZH2 phosphorylation to facilitate its liberation from polycomb repressive complex 2 (PRC2). This process results in the establishment of a transcriptional complex of EZH2, RNA-polymerase II (POL2) and nuclear actin, which orchestrates aberrant epithelial repair programmes. The liberation of EZH2 from PRC2 is accompanied by an EZH2-EZH1 switch to preserve H3K27me3 deposition at non-target genes. Loss of epithelial TAK1, EZH2 or blocking nuclear actin influx attenuates the fibrotic cascade and restores respiratory homeostasis. Accordingly, EZH2 inhibition significantly improves outcomes in a pulmonary fibrosis mouse model. Our results reveal an important non-canonical function of EZH2, paving the way for new therapeutic interventions in fibrotic lung diseases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibrose , Histonas/metabolismo , Camundongos , Fosforilação , Complexo Repressor Polycomb 2/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L206-L218, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762632

RESUMO

Animal models are important to mimic certain pathways or biological aspects of human pathologies including acute and chronic pulmonary diseases. We developed a novel and flexible mouse model of acute epithelial lung injury based on adeno-associated virus (AAV) variant 6.2-mediated expression of the human diphtheria toxin receptor (DTR). Following intratracheal administration of diphtheria toxin (DT), a cell-specific death of bronchial and alveolar epithelial cells can be observed. In contrast to other lung injury models, the here described mouse model provides the possibility of targeted injury using specific tropisms of AAV vectors or cell-type-specific promotors to drive the human DTR expression. Also, generation of cell-specific mouse lines is not required. Detailed characterization of the AAV-DTR/DT mouse model including titration of viral genome (vg) load and administered DT amount revealed increasing cell numbers in bronchoalveolar lavage (BAL; macrophages, neutrophils, and unspecified cells) and elevation of degenerated cells and infiltrated leukocytes in lung tissue, dependent of vg load and DT dose. Cytokine levels in BAL fluid showed different patterns with higher vg load, e.g., IFNγ, TNFα, and IP10 increasing and IL-5 and IL-6 decreasing, whereas lung function was not affected. In addition, laser-capture microdissection (LCM)-based proteomics of bronchial epithelium and alveolar tissue revealed upregulated immune and inflammatory responses in all regions and extracellular matrix deposition in infiltrated alveoli. Overall, our novel AAV-DTR/DT model allows investigation of repair mechanisms following epithelial injury and resembles specific mechanistic aspects of acute and chronic pulmonary diseases.


Assuntos
Lesão Pulmonar Aguda , Toxina Diftérica , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/metabolismo , Animais , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Mol Biol Evol ; 38(3): 952-967, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33031537

RESUMO

Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.


Assuntos
Evolução Molecular , Methylococcus capsulatus/genética , Esterol 14-Desmetilase/genética , Animais , Humanos , Methylococcus capsulatus/enzimologia , Conformação Proteica , Esterol 14-Desmetilase/química
7.
Proc Natl Acad Sci U S A ; 116(25): 12343-12352, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31167942

RESUMO

Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Família Multigênica , Vírus/enzimologia , Sistema Enzimático do Citocromo P-450/genética
8.
Respir Res ; 22(1): 48, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557843

RESUMO

BACKGROUND: Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. METHODS: First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann-Whitney U test or One-way nonparametric Kruskal-Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett's post-hoc test where appropriate. RESULTS: A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. CONCLUSIONS: TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction.


Assuntos
Asma/tratamento farmacológico , Broncoconstrição/fisiologia , Broncodilatadores/administração & dosagem , Pulmão/fisiologia , Ovalbumina/toxicidade , Canal de Cátion TRPA1/antagonistas & inibidores , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cobaias , Humanos , Pulmão/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Projetos Piloto
9.
Respir Res ; 22(1): 158, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022896

RESUMO

BACKGROUND: RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS: IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS: We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION: These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Interleucina-17/metabolismo , Interleucinas/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Células Th17/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Adulto Jovem , Interleucina 22
10.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383831

RESUMO

In agriculture, early detection of plant stresses is advantageous in preventing crop yield losses. Remote sensors are increasingly being utilized for crop health monitoring, offering non-destructive, spatialized detection and the quantification of plant diseases at various levels of measurement. Advances in sensor technologies have promoted the development of novel techniques for precision agriculture. As in situ techniques are surpassed by multispectral imaging, refinement of hyperspectral imaging and the promising emergence of light detection and ranging (LIDAR), remote sensing will define the future of biotic and abiotic plant stress detection, crop yield estimation and product quality. The added value of LIDAR-based systems stems from their greater flexibility in capturing data, high rate of data delivery and suitability for a high level of automation while overcoming the shortcomings of passive systems limited by atmospheric conditions, changes in light, viewing angle and canopy structure. In particular, a multi-sensor systems approach and associated data fusion techniques (i.e., blending LIDAR with existing electro-optical sensors) offer increased accuracy in plant disease detection by focusing on traditional optimal estimation and the adoption of artificial intelligence techniques for spatially and temporally distributed big data. When applied across different platforms (handheld, ground-based, airborne, ground/aerial robotic vehicles or satellites), these electro-optical sensors offer new avenues to predict and react to plant stress and disease. This review examines the key sensor characteristics, platform integration options and data analysis techniques recently proposed in the field of precision agriculture and highlights the key challenges and benefits of each concept towards informing future research in this very important and rapidly growing field.


Assuntos
Inteligência Artificial , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Agricultura , Produtos Agrícolas , Doenças das Plantas
11.
Lancet Oncol ; 20(2): 267-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579763

RESUMO

BACKGROUND: The optimal duration of androgen suppression for men with locally advanced prostate cancer receiving radiotherapy with curative intent is yet to be defined. Zoledronic acid is effective in preventing androgen suppression-induced bone loss, but its role in preventing castration-sensitive bone metastases in locally advanced prostate cancer is unclear. The RADAR trial assessed whether the addition of 12 months of adjuvant androgen suppression, 18 months of zoledronic acid, or both, can improve outcomes in men with locally advanced prostate cancer who receive 6 months of androgen suppression and prostatic radiotherapy. This report presents 10-year outcomes from this trial. METHODS: For this randomised, phase 3, 2 × 2 factorial trial, eligible men were 18 years or older with locally advanced prostate cancer (either T2b-4, N0 M0 tumours or T2a, N0 M0 tumours provided Gleason score was ≥7 and baseline prostate-specific antigen [PSA] concentration was ≥10 µg/L). We randomly allocated participants in a 2 × 2 factorial design by computer-generated randomisation (using the minimisation technique, and stratified by centre, baseline PSA concentration, clinical tumour stage, Gleason score, and use of a brachytherapy boost) in a 1:1:1:1 ratio to four treatment groups. Patients in the control group received 6 months of neoadjuvant androgen suppression with leuprorelin (22·5 mg every 3 months, intramuscularly) and radiotherapy alone (short-term androgen suppression [STAS]); this treatment was either followed by another 12 months of adjuvant androgen suppression with leuprorelin (22·5 mg every 3 months, intramuscularly; intermediate-term androgen suppression [ITAS]), or accompanied by 18 months of zoledronic acid (4 mg every 3 months, intravenously) starting at randomisation (STAS plus zoledronic acid), or both (ITAS plus zoledronic acid). All patients received radiotherapy to the prostate and seminal vesicles, starting from the end of the fifth month of androgen suppression; dosing options were 66, 70, and 74 Gy in 2-Gy fractions per day, or 46 Gy in 2-Gy fractions followed by a high-dose-rate brachytherapy boost dose of 19·5 Gy in 6·5-Gy fractions. Treatment allocation was open label. The primary endpoint was prostate cancer-specific mortality and was analysed according to intention-to-treat using competing-risks methods. The trial is closed to follow-up and this is the final report of the main endpoints. This trial is registered with ClinicalTrials.gov, number NCT00193856. FINDINGS: Between Oct 20, 2003, and Aug 15, 2007, 1071 men were enrolled and randomly assigned to STAS (n=268), ITAS (n=268), STAS plus zoledronic acid (n=268), and ITAS plus zoledronic acid (n=267). Median follow-up was 10·4 years (IQR 7·9-11·7). At this 10-year follow-up, no interactions were observed between androgen suppression and zoledronic acid so the treatment groups were collapsed to compare treatments according to duration of androgen suppression: 6 months of androgen suppression plus radiotherapy (6AS+RT) versus 18 months of androgen suppression plus radiotherapy (18AS+RT) and to compare treatments according to whether or not patients received zoledronic acid. The total number of deaths was 375 (200 men receiving 6AS+RT and 175 men receiving 18AS+RT), of which 143 (38%) were attributable to prostate cancer (81 men receiving 6AS+RT and 62 men receiving 18AS+RT). When analysed by duration of androgen suppression, the adjusted cumulative incidence of prostate cancer-specific mortality was 13·3% (95% CI 10·3-16·0) for 6AS+RT versus 9·7% (7·3-12·0) for 18AS+RT, representing an absolute difference of 3·7% (95% CI 0·3-7·1; sub-hazard ratio [sHR] 0·70 [95% CI 0·50-0·98], adjusted p=0·035). The addition of zoledronic acid did not affect prostate cancer-specific mortality; the adjusted cumulative incidence of prostate cancer-specific mortality was 11·2% (95% CI 8·7-13·7) with zoledronic acid vs 11·7% (9·2-14·1) without, representing an absolute difference of -0·5% (95% CI -3·8 to 2·9; sHR 0·95 [95% CI 0·69-1·32], adjusted p=0·78). Although safety analysis was not prespecified for this 10-year analysis, one new serious adverse event (osteonecrosis of the mandible, in a patient who received 18 months of androgen suppression plus zoledronic acid) occurred since our previous report, bringing the total number of cases of this serious adverse event to three (<1% out of 530 patients who received zoledronic acid evaluated for safety) and the total number of drug-related serious adverse events to 12 (1% out of all 1065 patients evaluable for safety). No treatment-related deaths occurred during the study. INTERPRETATION: 18 months of androgen suppression plus radiotherapy is a more effective treatment option for locally advanced prostate cancer than 6 months of androgen suppression plus radiotherapy, but the addition of zoledronic acid to this treatment regimen is not beneficial. Evidence from the RADAR and French Canadian Prostate Cancer Study IV trials suggests that 18 months of androgen suppression with moderate radiation dose escalation is an effective but more tolerable option than longer durations of androgen suppression for men with locally advanced prostate cancer including intermediate and high risk elements. FUNDING: National Health and Medical Research Council of Australia, Novartis Pharmaceuticals Australia, AbbVie Pharmaceuticals Australia, New Zealand Health Research Council, New Zealand Cancer Society, Cancer Standards Institute New Zealand, University of Newcastle (Australia), Hunter Medical Research Institute, Calvary Mater Newcastle Radiation Oncology Fund, and Maitland Cancer Appeal.


Assuntos
Antagonistas de Androgênios/administração & dosagem , Braquiterapia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Ácido Zoledrônico/administração & dosagem , Idoso , Austrália , Causas de Morte , Terapia Combinada , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Esquema de Medicação , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Nova Zelândia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/mortalidade , Medição de Risco , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
12.
Eur J Immunol ; 48(11): 1904-1914, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30169894

RESUMO

Steroid refractory inflammation is an unmet medical need in the management of inflammatory diseases. Thus, mechanisms, improving steroid sensitivity and simultaneously decreasing inflammation have potential therapeutic utility. The FK506-binding protein 51 (FKBP51) is reported to influence steroid sensitivity in mental disorders. Moreover, biochemical data highlight a connection between FKBP51 and the IKK complex. The aim of this study was to elucidate whether FKBP51 inhibition had utility in modulating steroid resistant inflammation by increasing the sensitivity of the glucocorticoid receptor (GR) signalling and simultaneously inhibiting NFκB-driven inflammation. We have demonstrated that FKBP51 silencing in a bronchial epithelial cell line resulted in a 10-fold increased potency for dexamethasone towards IL1beta-induced IL6 and IL8, whilst FKBP51 over-expression of FKBP51 reduced significantly the prednisolone sensitivity in a murine HDM-driven pulmonary inflammation model. Immunoprecipitation experiments with anti-FKBP51 antibodies, confirmed the presence of FKBP51 in a complex comprising Hsp90, GR and members of the IKK family. FKBP51 silencing reduced NFκB (p50/p65) nucleus translocation, resulting in reduced ICAM expression, cytokine and chemokine secretion. In conclusion, we demonstrate that FKBP51 has the potential to control inflammation in steroid insensitive patients in a steroid-dependent and independent manner and thus may be worthy of further study as a drug target.


Assuntos
NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroides/farmacologia , Proteínas de Ligação a Tacrolimo/metabolismo , Células A549 , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dexametasona/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunoprecipitação/métodos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Prednisolona/farmacologia , Receptores de Glucocorticoides/metabolismo
13.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 155-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28694077

RESUMO

Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".


Assuntos
Adaptação Fisiológica , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Sistema Enzimático do Citocromo P-450/química , Proteínas de Peixes/química , Gadiformes/metabolismo , Receptores de Hidrocarboneto Arílico/química , Sequência de Aminoácidos , Anfíbios , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sítios de Ligação , Aves , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gadiformes/genética , Expressão Gênica , Pressão Hidrostática , Mamíferos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Répteis , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
BJU Int ; 121(2): 194-202, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28872752

RESUMO

OBJECTIVES: To explore if duration of previous exposure to androgen deprivation therapy (ADT) in men with prostate cancer (PCa) undertaking a year-long exercise programme moderates the exercise response with regard to body composition and muscle performance, and also to explore the moderator effects of baseline testosterone, time since ADT, and baseline value of the outcome. PATIENTS AND METHODS: In a multicentre randomized controlled trial, 100 men who had previously undergone either 6 months (short-term) or 18 months (long-term) of ADT in combination with radiotherapy, as part of the TROG 03.04 RADAR trial, were randomized to 6 months supervised exercise, followed by a 6-month home-based maintenance programme, or to printed physical activity educational material for 12 months across 13 university-affiliated exercise clinics in Australia and New Zealand. The participants were long-term survivors of PCa with a mean age of 71.7 ± 6.4 years, and were assessed for lower extremity performance (repeated chair rise), with a subset of men (n = 57) undergoing additional measures for upper and lower body muscle strength and body composition (lean mass, fat mass, appendicular skeletal muscle [ASM]) by dual X-ray absorptiometry. Data were analysed using generalized estimating equations. RESULTS: Time on ADT significantly moderated the exercise effects on chair rise (ßinteraction = -1.3 s, 95% confidence interval [CI] -2.6 to 0.0), whole-body lean mass (ßinteraction = 1194 g, 95% CI 234 to 2153) and ASM mass (ßinteraction = 562 g, 95% CI 49 to 1075), and approached significance for fat mass (ßinteraction = -1107 g, 95% CI -2346 to 132), with greater benefits for men previously on long-term ADT. At 6 months, the intervention effects on chair rise time -1.5 s (95% CI -2.5 to -0.5), whole-body lean mass 824 g (95% CI 8 to 1640), ASM mass 709 g (95% CI 260 to 1158), and fat mass -1377 g (95% CI -2156 to -598) were significant for men previously on long-term ADT, but not for men on short-term ADT. At 12 months, the intervention effects for men on long-term ADT remained significant for the chair rise, with improved performance (-2.0 s, 95% CI -3.0 to -1.0) and increased ASM (537 g, 95% CI 153 to 921). Time on ADT did not moderate the exercise effects on muscle strength, nor did time since ADT cessation moderate any intervention effects. Similarly, testosterone and baseline values of the outcome had negligible moderator effects. CONCLUSIONS: Men with PCa previously treated long-term with ADT respond more favourably to exercise in terms of lower body muscle performance and body composition (lean and fat mass, and ASM) than those with short-term ADT exposure. As a result, men who were formerly on long-term androgen suppression regimens should be especially prescribed exercise medicine interventions to alleviate residual treatment-related adverse effects.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antagonistas de Androgênios/administração & dosagem , Composição Corporal , Exercício Físico/fisiologia , Força Muscular , Neoplasias da Próstata/tratamento farmacológico , Idoso , Quimiorradioterapia , Teste de Esforço , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Neoplasias da Próstata/radioterapia , Testosterona/sangue , Fatores de Tempo
15.
Pulm Pharmacol Ther ; 44: 96-105, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315490

RESUMO

Smoking is an important risk factor for the development of chronic obstructive pulmonary disease (COPD) and viral infections are believed to be major triggers of exacerbations, which periodically lead to a worsening of symptoms. The pro-inflammatory IL-1 family members IL-1α and IL-1ß are increased in COPD patients and might contribute to disease pathology. We investigated whether individual or combined inhibition of these cytokines reduced lung inflammation in cigarette smoke (CS)-exposed and H1N1-infected BALB/c mice. Animals were treated with individual or combined antibodies (Abs) directed against IL-1α, IL-1ß or IL-1R1. Cells in BAL fluid and cytokines/chemokines in lung homogenate were determined. The viral load was investigated. Blocking IL-1α had significant suppressive effects on total cells, neutrophils, and macrophages. Furthermore, it reduced KC levels significantly. Blocking of IL-1ß did not provide significant activity. In primary human bronchial epithelial air-liquid-interface cell cultures infected with H1N1, IL-1α Abs but not IL-1ß Abs reduced levels of TNF-α and IL-6. Concomitant usage of Abs against IL-1α/IL-1ß revealed strong effects in vivo and reduced total cells, neutrophils and macrophages. Additionally, levels of KC, IL-6, TNF-α, MCP-1, MIP-1α and MIP-1ß were significantly reduced and ICAM-1 and MUC5 A/C mRNA expression was attenuated. The viral load decreased significantly upon combined IL-1α/IL-1ß Ab treatment. Blocking the IL-1R1 provided significant effects on total cells, neutrophils and macrophages but was inferior compared to inhibiting both its soluble ligands IL-1α/IL-1ß. Our results suggest that combined inhibition of IL-1α/IL-1ß might be beneficial to reduce CS/H1N1-induced airway inflammation. Moreover, combined targeting of both IL-1α/IL-1ß might be more efficient compared to individual neutralization IL-1α or IL-1ß or inhibition of the IL-1R1.


Assuntos
Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Pneumonia/prevenção & controle , Fumar/efeitos adversos , Animais , Anticorpos , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/etiologia , Inflamação/patologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/complicações , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/complicações , Pneumonia/etiologia , Fatores de Risco , Fumaça/efeitos adversos , Nicotiana , Fator de Necrose Tumoral alfa/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 36(6): 1247-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27102960

RESUMO

OBJECTIVE: Ischemic stroke, which is mainly caused by thromboembolic occlusion of brain arteries, is the second leading cause of death and disability worldwide with limited treatment options. The platelet collagen receptor glycoprotein VI (GPVI) is a key player in arterial thrombosis and a critical determinant of stroke outcome, making its signaling pathway an attractive target for pharmacological intervention. The spleen tyrosine kinase (Syk) is an essential signaling mediator downstream of not only GPVI but also other platelet and immune cell receptors. We sought to assess whether Syk might be an effective antithrombotic target. APPROACH AND RESULTS: We demonstrate that mice lacking Syk in platelets specifically are protected from arterial thrombus formation and ischemic stroke but display unaltered hemostasis. Furthermore, we show that mice treated with the novel, selective, and orally bioavailable Syk inhibitor BI1002494 were protected in a model of arterial thrombosis and had smaller infarct sizes and a significantly better neurological outcome 24 hours after transient middle cerebral artery occlusion, also when BI1002494 was administered therapeutically, that is, after ischemia. CONCLUSIONS: These results provide direct evidence that pharmacological Syk inhibition might provide a safe therapeutic strategy to prevent arterial thrombosis and to limit infarct progression in acute stroke.


Assuntos
Arteriopatias Oclusivas/prevenção & controle , Plaquetas/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Hemostasia/efeitos dos fármacos , Infarto da Artéria Cerebral Média/prevenção & controle , Inibidores de Proteínas Quinases/administração & dosagem , Quinase Syk/antagonistas & inibidores , Trombose/prevenção & controle , Administração Oral , Animais , Arteriopatias Oclusivas/sangue , Arteriopatias Oclusivas/enzimologia , Arteriopatias Oclusivas/genética , Plaquetas/enzimologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/sangue , Quinase Syk/deficiência , Quinase Syk/genética , Trombose/sangue , Trombose/enzimologia , Trombose/genética , Fatores de Tempo
17.
J Biol Chem ; 290(39): 23916-34, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26269599

RESUMO

Aspergillus fumigatus is the opportunistic fungal pathogen that predominantly affects the immunocompromised population and causes 600,000 deaths/year. The cytochrome P450 51 (CYP51) inhibitor voriconazole is currently the drug of choice, yet the treatment efficiency remains low, calling for rational development of more efficient agents. A. fumigatus has two CYP51 genes, CYP51A and CYP51B, which share 59% amino acid sequence identity. CYP51B is expressed constitutively, whereas gene CYP51A is reported to be inducible. We expressed, purified, and characterized A. fumigatus CYP51B, including determination of its substrate preferences, catalytic parameters, inhibition, and x-ray structure in complexes with voriconazole and the experimental inhibitor (R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VNI). The enzyme demethylated its natural substrate eburicol and the plant CYP51 substrate obtusifoliol at steady-state rates of 17 and 16 min(-1), respectively, but did not metabolize lanosterol, and the topical antifungal drug miconazole was the strongest inhibitor that we identified. The x-ray crystal structures displayed high overall similarity of A. fumigatus CYP51B to CYP51 orthologs from other biological kingdoms but revealed phylum-specific differences relevant to enzyme catalysis and inhibition. The complex with voriconazole provides an explanation for the potency of this relatively small molecule, whereas the complex with VNI outlines a direction for further enhancement of the efficiency of this new inhibitory scaffold to treat humans afflicted with filamentous fungal infections.


Assuntos
Aspergillus fumigatus/enzimologia , Sistema Enzimático do Citocromo P-450/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Voriconazol/química , Aspergillus fumigatus/genética , Catálise , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
18.
J Pharmacol Exp Ther ; 357(3): 554-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048659

RESUMO

BI 1002494 [(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phenyl)-[1,6]napthyridin-5-yloxy]-ethyl}pyrrolidin-2-one] is a novel, potent, and selective spleen tyrosine kinase (SYK) inhibitor with sustained plasma exposure after oral administration in rats, which qualifies this molecule as a good in vitro and in vivo tool compound. BI 1002494 exhibits higher potency in inhibiting high-affinity IgE receptor-mediated mast cell and basophil degranulation (IC50 = 115 nM) compared with B-cell receptor-mediated activation of B cells (IC50 = 810 nM). This may be explained by lower kinase potency when the physiologic ligand B-cell linker was used, suggesting that SYK inhibitors may exhibit differential potency depending on the cell type and the respective signal transduction ligand. A 3-fold decrease in potency was observed in rat basophils (IC50 = 323 nM) compared with human basophils, but a similar species potency shift was not observed in B cells. The lower potency in rat basophils was confirmed in both ex vivo inhibition of bronchoconstriction in precision-cut rat lung slices and in reversal of anaphylaxis-driven airway resistance in rats. The different cellular potencies translated into different in vivo efficacy; full efficacy in a rat ovalbumin model (that contains an element of mast cell dependence) was achieved with a trough plasma concentration of 340 nM, whereas full efficacy in a rat collagen-induced arthritis model (that contains an element of B-cell dependence) was achieved with a trough plasma concentration of 1400 nM. Taken together, these data provide a platform from which different estimates of human efficacious exposures can be made according to the relevant cell type for the indication intended to be treated.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Basófilos/efeitos dos fármacos , Basófilos/enzimologia , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/farmacologia , Pirrolidinonas/farmacologia , Quinase Syk/antagonistas & inibidores , Administração Oral , Animais , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Naftiridinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirrolidinas/administração & dosagem , Pirrolidinonas/administração & dosagem , Ratos
19.
Mol Phylogenet Evol ; 94(Pt B): 676-687, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26432395

RESUMO

Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose.


Assuntos
Evolução Biológica , Cordados/genética , Hormônios Esteroides Gonadais/biossíntese , Filogenia , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Humanos , Funções Verossimilhança
20.
Toxicol Appl Pharmacol ; 296: 73-84, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26853319

RESUMO

Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease.


Assuntos
Clonagem Molecular/métodos , Sistema Enzimático do Citocromo P-450/genética , Agitação Psicomotora/enzimologia , Agitação Psicomotora/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Galinhas , Clonagem Molecular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/deficiência , Técnicas de Silenciamento de Genes/métodos , Humanos , Dados de Sequência Molecular , Ratos , Xenobióticos/toxicidade , Xenopus , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA