Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Rev Neurosci ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448818

RESUMO

Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.

2.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814872

RESUMO

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 119(33): e2110416119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939696

RESUMO

Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.


Assuntos
Córtex Cerebral , Vias Neurais , Caracteres Sexuais , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520359

RESUMO

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Autopsia , Algoritmos
5.
Biochem Biophys Res Commun ; 728: 150302, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-38968771

RESUMO

Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other. Research has revealed that neurobiology is a key determinant of brain network architecture, which gives rise to spatiotemporally constrained patterns of activity that underlie computation. Here, we discuss how neural systems use dynamics for computation, and claim that the biological constraints that shape brain networks may be leveraged to improve the implementation of artificial neural networks. To formalize this discussion, we consider a natural artificial analog of the brain that has been used extensively to model neural computation: the recurrent neural network (RNN). In both the brain and the RNN, we emphasize the common computational substrate atop which dynamics occur-the connectivity between neurons-and we explore the unique computational advantages offered by biophysical constraints such as resource efficiency, spatial embedding, and neurodevelopment.


Assuntos
Encéfalo , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Humanos , Encéfalo/fisiologia , Neurônios/fisiologia , Animais , Rede Nervosa/fisiologia , Análise Espaço-Temporal
6.
Nat Methods ; 18(7): 775-778, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155395

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Humanos , Linguagens de Programação , Fluxo de Trabalho
7.
Mol Psychiatry ; 28(8): 3314-3323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353585

RESUMO

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Alprazolam/farmacologia , Emoções , Encéfalo , Tonsila do Cerebelo , Mapeamento Encefálico , Imageamento por Ressonância Magnética
8.
Cereb Cortex ; 33(4): 1058-1073, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348659

RESUMO

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.


Assuntos
Função Executiva , Memória de Curto Prazo , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Escolaridade , Pais , Imageamento por Ressonância Magnética/métodos , Classe Social , Encéfalo/fisiologia
9.
Neuroimage ; 267: 119831, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586541

RESUMO

Converging evidence from both human neuroimaging and animal studies has supported a model of mesolimbic processing underlying reward learning behaviors, based on the computation of reward prediction errors. However, competing evidence supports human dopamine signaling in the basal ganglia as also contributing to the generation of higher order learning heuristics. Here, we present data from a large (N = 81, 18-30yo), multi-modal neuroimaging study using simultaneously acquired task fMRI, affording temporal resolution of reward system function, and PET imaging with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures showed ventral striatum involvement for signaling rewards. However, greater DA release was uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal within the best fitting reinforcement learning model. This DA response was associated with BOLD activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic signaling interacts with a network of cortical regions to generate task-optimal learning strategies, rather than representing reward outcomes in isolation.


Assuntos
Dopamina , Motivação , Animais , Humanos , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Corpo Estriado/fisiologia , Recompensa , Tomografia por Emissão de Pósitrons/métodos
10.
Neuroimage ; 271: 120037, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931330

RESUMO

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.


Assuntos
Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Software , Projetos de Pesquisa , Modelos Estatísticos
11.
Annu Rev Neurosci ; 38: 151-70, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154978

RESUMO

Brains systems undergo unique and specific dynamic changes at the cellular, circuit, and systems level that underlie the transition to adult-level cognitive control. We integrate literature from these different levels of analyses to propose a novel model of the brain basis of the development of cognitive control. The ability to consistently exert cognitive control improves into adulthood as the flexible integration of component processes, including inhibitory control, performance monitoring, and working memory, increases. Unique maturational changes in brain structure, supported by interactions between dopaminergic and GABAergic systems, contribute to enhanced network synchronization and an improved signal-to-noise ratio. In turn, these factors facilitate the specialization and strengthening of connectivity in networks supporting the transition to adult levels of cognitive control. This model provides a novel understanding of the adolescent period as an adaptive period of heightened experience-seeking necessary for the specialization of brain systems supporting cognitive control.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Cognição/fisiologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Humanos , Modelos Neurológicos
12.
Proc Natl Acad Sci U S A ; 117(1): 771-778, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31874926

RESUMO

The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure-function coupling using diffusion-weighted imaging and n-back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure-function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure-function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data (n = 294). Moreover, structure-function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Conectoma , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Masculino , Análise Espacial , Adulto Jovem
13.
Mol Psychiatry ; 26(6): 2137-2147, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479514

RESUMO

Low reward responsiveness (RR) is associated with poor psychological well-being, psychiatric disorder risk, and psychotropic treatment resistance. Functional MRI studies have reported decreased activity within the brain's reward network in individuals with RR deficits, however the neurochemistry underlying network hypofunction in those with low RR remains unclear. This study employed ultra-high field glutamate chemical exchange saturation transfer (GluCEST) imaging to investigate the hypothesis that glutamatergic deficits within the reward network contribute to low RR. GluCEST images were acquired at 7.0 T from 45 participants (ages 15-29, 30 females) including 15 healthy individuals, 11 with depression, and 19 with psychosis spectrum symptoms. The GluCEST contrast, a measure sensitive to local glutamate concentration, was quantified in a meta-analytically defined reward network comprised of cortical, subcortical, and brainstem regions. Associations between brain GluCEST contrast and Behavioral Activation System Scale RR scores were assessed using multiple linear regressions. Analyses revealed that reward network GluCEST contrast was positively and selectively associated with RR, but not other clinical features. Follow-up investigations identified that this association was driven by the subcortical reward network and network areas that encode the salience of valenced stimuli. We observed no association between RR and the GluCEST contrast within non-reward cortex. This study thus provides new evidence that reward network glutamate levels contribute to individual differences in RR. Decreased reward network excitatory neurotransmission or metabolism may be mechanisms driving reward network hypofunction and RR deficits. These findings provide a framework for understanding the efficacy of glutamate-modulating psychotropics such as ketamine for treating anhedonia.


Assuntos
Ácido Glutâmico , Transtornos Psicóticos , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Recompensa , Adulto Jovem
14.
J Neurosci ; 40(9): 1810-1818, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31988059

RESUMO

Brain iron is vital to multiple aspects of brain function, including oxidative metabolism, myelination, and neurotransmitter synthesis. Atypical iron concentration in the basal ganglia is associated with neurodegenerative disorders in aging and cognitive deficits. However, the normative development of brain iron concentration in adolescence and its relationship to cognition are less well understood. Here, we address this gap in a longitudinal sample of 922 humans aged 8-26 years at the first visit (M = 15.1, SD = 3.72; 336 males, 486 females) with up to four multiecho T2* scans each. Using this sample of 1236 imaging sessions, we assessed the longitudinal developmental trajectories of tissue iron in the basal ganglia. We quantified tissue iron concentration using R2* relaxometry within four basal ganglia regions, including the caudate, putamen, nucleus accumbens, and globus pallidus. The longitudinal development of R2* was modeled using generalized additive mixed models (GAMMs) with splines to capture linear and nonlinear developmental processes. We observed significant increases in R2* across all regions, with the greatest and most prolonged increases occurring in the globus pallidus and putamen. Further, we found that the developmental trajectory of R2* in the putamen is significantly related to individual differences in cognitive ability, such that greater cognitive ability is increasingly associated with greater iron concentration through late adolescence and young-adulthood. Together, our results suggest a prolonged period of basal ganglia iron enrichment that extends into the mid-twenties, with diminished iron concentration associated with poorer cognitive ability during late adolescence.SIGNIFICANCE STATEMENT Brain tissue iron is essential to healthy brain function. Atypical basal ganglia tissue iron levels have been linked to impaired cognition in iron deficient children and adults with neurodegenerative disorders. However, the normative developmental trajectory of basal ganglia iron concentration during adolescence and its association with cognition are less well understood. In the largest study of tissue iron development yet reported, we characterize the developmental trajectory of tissue iron concentration across the basal ganglia during adolescence and provide evidence that diminished iron content is associated with poorer cognitive performance even in healthy youth. These results highlight the transition from adolescence to adulthood as a period of dynamic maturation of tissue iron concentration in the basal ganglia.


Assuntos
Química Encefálica/fisiologia , Cognição/fisiologia , Ferro/metabolismo , Adolescente , Adulto , Envelhecimento/metabolismo , Envelhecimento/psicologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Desempenho Psicomotor , Adulto Jovem
15.
Neuroimage ; 209: 116322, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786166

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is associated with atypical activation in the ventral stream during face processing. The current study further characterizes the development of face processing in ASD using a multivoxel pattern analysis, which assesses the similarity in the representation of exemplars from the same category. METHODS: Ninety-two children, adolescents and adults - with and without ASD - performed the Cambridge Face Memory Test, the Australian Face Memory Test, and a matched car memory test. Regions of interest during these tasks included Fusiform Face Area (FFA), based on the literature, and additional, structurally-defined regions in the ventral stream. Group differences in the patterns of activity within these ROIs when memorizing exemplars were examined using a representational similarity analysis (RSA). RESULTS: The RSA revealed significant interactions between age group and diagnostic group in R FFA, with increasing similarity within a category (faces, cars) into adulthood typically but not in those with ASD. This pattern was also evident in structurally defined ventral stream regions, namely L inferior frontal gyrus (IFG), bilateral temporoparietal junction (TPJ), L inferior temporal lobule, and the R fusiform gyrus. CONCLUSIONS: The specialization of face and object processing from adolescence to adulthood evident in typical development may be impaired in ASD, undermining the ability to reach adult-level visual processing in those with ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Neuroimagem Funcional , Desenvolvimento Humano/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Social , Adolescente , Adulto , Fatores Etários , Córtex Cerebral/diagnóstico por imagem , Criança , Reconhecimento Facial/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
J Neurosci ; 38(26): 5969-5981, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29858483

RESUMO

Natural environments convey information through multiple sensory modalities, all of which contribute to people's percepts. Although it has been shown that visual or auditory content of scene categories can be decoded from brain activity, it remains unclear how humans represent scene information beyond a specific sensory modality domain. To address this question, we investigated how categories of scene images and sounds are represented in several brain regions. A group of healthy human subjects (both sexes) participated in the present study, where their brain activity was measured with fMRI while viewing images or listening to sounds of different real-world environments. We found that both visual and auditory scene categories can be decoded not only from modality-specific areas, but also from several brain regions in the temporal, parietal, and prefrontal cortex (PFC). Intriguingly, only in the PFC, but not in any other regions, categories of scene images and sounds appear to be represented in similar activation patterns, suggesting that scene representations in PFC are modality-independent. Furthermore, the error patterns of neural decoders indicate that category-specific neural activity patterns in the middle and superior frontal gyri are tightly linked to categorization behavior. Our findings demonstrate that complex scene information is represented at an abstract level in the PFC, regardless of the sensory modality of the stimulus.SIGNIFICANCE STATEMENT Our experience in daily life includes multiple sensory inputs, such as images, sounds, or scents from the surroundings, which all contribute to our understanding of the environment. Here, for the first time, we investigated where and how in the brain information about the natural environment from multiple senses is merged to form modality-independent representations of scene categories. We show direct decoding of scene categories across sensory modalities from patterns of neural activity in the prefrontal cortex (PFC). We also conclusively tie these neural representations to human categorization behavior by comparing patterns of errors between a neural decoder and behavior. Our findings suggest that PFC is a central hub for integrating sensory information and computing modality-independent representations of scene categories.


Assuntos
Percepção/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
17.
Hum Brain Mapp ; 40(5): 1480-1495, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496644

RESUMO

To track iron accumulation and location in the brain across adolescence, we repurposed diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data acquired in 513 adolescents and validated iron estimates with quantitative susceptibility mapping (QSM) in 104 of these subjects. DTI and fMRI data were acquired longitudinally over 1 year in 245 male and 268 female, no-to-low alcohol-consuming adolescents (12-21 years at baseline) from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) study. Brain region average signal values were calculated for susceptibility to nonheme iron deposition: pallidum, putamen, dentate nucleus, red nucleus, and substantia nigra. To estimate nonheme iron, the corpus callosum signal (robust to iron effects) was divided by regional signals to generate estimated R2 (edwR2 for DTI) and R2 * (eR2 * for fMRI). Longitudinal iron deposition was measured using the normalized signal change across time for each subject. Validation using baseline QSM, derived from susceptibility-weighted imaging, was performed on 46 male and 58 female participants. Normalized iron deposition estimates from DTI and fMRI correlated with age in most regions; both estimates indicated less iron in boys than girls. QSM results correlated highly with DTI and fMRI results (adjusted R2 = 0.643 for DTI, 0.578 for fMRI). Cross-sectional and longitudinal analyses indicated an initial rapid increase in iron, notably in the putamen and red nucleus, that slowed with age. DTI and fMRI data can be repurposed for identifying regional brain iron deposition in developing adolescents as validated with high correspondence with QSM.


Assuntos
Química Encefálica , Ferro/metabolismo , Adolescente , Envelhecimento/metabolismo , Encéfalo/crescimento & desenvolvimento , Mapeamento Encefálico , Criança , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Putamen/crescimento & desenvolvimento , Putamen/metabolismo , Núcleo Rubro/crescimento & desenvolvimento , Núcleo Rubro/metabolismo , Adulto Jovem
18.
Cereb Cortex ; 28(8): 2834-2845, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106535

RESUMO

The relative influence of affective and cognitive processes on behavior is increasingly understood to transform through development, from adolescence into adulthood, but the neuroanatomical mechanisms underlying this change are not well understood. We analyzed diffusion magnetic resonance imaging in 115 10- to 28-year-old participants to identify convergent corticostriatal projections from cortical systems involved in affect and cognitive control and determined the age-related differences in their relative structural integrity. Results indicate that the relative integrity of affective projections, in relation to projections from cognitive control systems, decreases with age and is positively associated with reward-driven task performance. Together, these findings provide new evidence that developmental differences in the integration of corticostriatal networks involved in affect and cognitive control underlie known developmental decreases in the propensity for reward-driven behavior into adulthood.


Assuntos
Afeto/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Vias Neurais/fisiologia , Recompensa , Adolescente , Adulto , Fatores Etários , Anisotropia , Atenção/fisiologia , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Criança , Corpo Estriado/diagnóstico por imagem , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Análise de Regressão , Caracteres Sexuais , Adulto Jovem
19.
JAMA Psychiatry ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196567

RESUMO

Importance: Mental illnesses are a leading cause of disability globally, and functional disability is often in part caused by cognitive impairments across psychiatric disorders. However, studies have consistently reported seemingly opposite findings regarding the association between cognition and psychiatric symptoms. Objective: To determine if the association between general cognition and mental health symptoms diverges at different symptom severities in children. Design, Setting, and Participants: A total of 5175 children with complete data at 2 time points assessed 2 years apart (aged 9 to 11 years at the first assessment) from the ongoing Adolescent Brain and Cognitive Development (ABCD) study were evaluated for a general cognition factor and mental health symptoms from September 2016 to August 2020 at 21 sites across the US. Polynomial and generalized additive models afforded derivation of continuous associations between cognition and psychiatric symptoms across different ranges of symptom severity. Data were analyzed from December 2022 to April 2024. Main Outcomes and Measures: Aggregate cognitive test scores (general cognition) were primarily evaluated in relation to total and subscale-specific symptoms reported from the Child Behavioral Checklist. Results: The sample included 5175 children (2713 male [52.4%] and 2462 female [47.6%]; mean [SD] age, 10.9 [1.18] years). Previously reported mixed findings regarding the association between general cognition and symptoms may consist of several underlying, opposed associations that depend on the class and severity of symptoms. Linear models recovered differing associations between general cognition and mental health symptoms, depending on the range of symptom severities queried. Nonlinear models confirm that internalizing symptoms were significantly positively associated with cognition at low symptom burdens higher cognition = more symptoms) and significantly negatively associated with cognition at high symptom burdens. Conclusions and Relevance: The association between mental health symptoms and general cognition in this study was nonlinear. Internalizing symptoms were both positively and negatively associated with general cognition at a significant level, depending on the range of symptom severities queried in the analysis sample. These results appear to reconcile mixed findings in prior studies, which implicitly assume that symptom severity tracks linearly with cognitive ability across the entire spectrum of mental health. As the association between cognition and symptoms may be opposite in low vs high symptom severity samples, these results reveal the necessity of clinical enrichment in studies of cognitive impairment.

20.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398345

RESUMO

Brain-wide association studies (BWAS) are a fundamental tool in discovering brain-behavior associations. Several recent studies showed that thousands of study participants are required to improve the replicability of BWAS because actual effect sizes are much smaller than those reported in smaller studies. Here, we perform analyses and meta-analyses of a robust effect size index (RESI) using 63 longitudinal and cross-sectional magnetic resonance imaging studies from the Lifespan Brain Chart Consortium (77,695 total scans) to demonstrate that optimizing study design is critical for improving standardized effect sizes and replicability in BWAS. A meta-analysis of brain volume associations with age indicates that BWAS with larger covariate variance have larger effect size estimates and that the longitudinal studies we examined have systematically larger standardized effect sizes than cross-sectional studies. We propose a cross-sectional RESI to adjust for the systematic difference in effect sizes between cross-sectional and longitudinal studies that allows investigators to quantify the benefit of conducting their study longitudinally. Analyzing age effects on global and regional brain measures from the United Kingdom Biobank and the Alzheimer's Disease Neuroimaging Initiative, we show that modifying longitudinal study design through sampling schemes to increase between-subject variability and adding a single additional longitudinal measurement per subject can improve effect sizes. However, evaluating these longitudinal sampling schemes on cognitive, psychopathology, and demographic associations with structural and functional brain outcome measures in the Adolescent Brain and Cognitive Development dataset shows that commonly used longitudinal models can, counterintuitively, reduce effect sizes. We demonstrate that the benefit of conducting longitudinal studies depends on the strengths of the between- and within-subject associations of the brain and non-brain measures. Explicitly modeling between- and within-subject effects avoids conflating the effects and allows optimizing effect sizes for them separately. These findings underscore the importance of considering study design features to improve the replicability of BWAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA