Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 629(8013): 878-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720086

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Simulação por Computador , Desenho de Fármacos , SARS-CoV-2 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Análise Mutacional de DNA , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , Desenho de Fármacos/métodos
2.
Behav Sci Law ; 41(1): 30-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36125392

RESUMO

Police officers are under high level of stress given the intense and emergent work nature. If left untreated, their mental wellbeing would be at risk and work performance compromised. However, mental health stigma is common among police officers and is perpetuated by factors like police cultures emphasizing toughness and self-reliance. In view of this, since 2016, the Hong Kong Police Force had launched a holistic campaign for Force members which was the first among law enforcement organizations in Hong Kong, aiming to reduce stigma, by enhancing mental health knowledge and decreasing negative attitudes and behaviors towards mental health issues. The programme incorporated standardised trainings of the Mental Health First Aid course with examples modified to the local police context, and psychoeducation via the use of digital medium and sharing by public figures. Positive feedback was received. It was foreseen that the campaign effects would increase Force members' awareness of their mental health, encourage help-seeking and facilitate officers' decision making when encountering crises in the community.


Assuntos
Polícia , Estereotipagem , Humanos , Polícia/psicologia , Hong Kong , Aplicação da Lei , Saúde Mental
3.
Nano Lett ; 22(3): 1053-1058, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044188

RESUMO

Here, we report on the direct sequential imaging of laser-induced cavitation of micron and nanoscale bubbles using Movie-Mode Dynamic Transmission Electron Microscopy (MM-DTEM). A 532 nm laser pulse (∼12 ns) was used to excite gold nanoparticles inside a ∼1.2 µm layer of water, and the resulting bubbles were observed with a series of nine electron pulses (∼10 ns) separated by as little as 40 ns peak to peak. Isolated nanobubbles were observed to collapse in less than 50 ns, while larger (∼2-3 µm) bubbles were observed to grow and collapse in less than 200 ns. Temporal profiles were generally asymmetric, possibly indicating faster growth than collapse dynamics, and the collapse time scale was found to be consistent with modeling and literature data from other techniques. More complex behavior was also observed for bubbles within proximity to each other, with interaction leading to longer lifetimes and more likely rebounding after collapse.


Assuntos
Ouro , Nanopartículas Metálicas , Diagnóstico por Imagem , Lasers
4.
Langmuir ; 36(31): 9054-9063, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32589849

RESUMO

Multimodal chromatography uses multiple modes of interaction such as charge, hydrophobic, or hydrogen bonding to separate proteins. Recently, we used molecular dynamics (MD) simulations to show that ligands immobilized on surfaces can interact and associate with neighboring ligands to form hydrophobic and charge patches, which may have important implications for the nature of protein-surface interactions. Here, we study interfacial systems of increasing complexity-from a single immobilized multimodal ligand to high density surfaces-to better understand how ligand behavior is affected by the presence of a surface and the presence of other ligands in the vicinity, and how this behavior scales to larger systems. We find that tethering a ligand to a surface restricts its conformations to a subset of those observed in free solution, yet the ligand maintains flexibility in the plane of the surface and can form contacts with neighboring ligands. We find that although the formation of a contact between two neighboring ligands is slightly unfavorable, three neighboring ligands exhibit a preference for the formation of a fully connected cluster. To explore how these trends in ligand association extend to a larger surface with high density of ligands, we performed coarse-grained Monte Carlo (MC) simulations of a 132-ligand surface using ligand interactions parametrized based on free energies obtained from the three-ligand MD simulations. Despite their simplicity, the coarse-grained simulations qualitatively capture the cluster size distribution of ligands observed in detailed MD simulations. Quantitative differences between the two suggest opportunities for improvements in the coarse-grained energy function for efficient predictions of cluster and pattern formations. Our approach presents a promising route to the engineering of multimodal patterns for future chromatographic resin design.

5.
Langmuir ; 35(51): 16770-16779, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31603330

RESUMO

Multimodal chromatography is a powerful tool which uses multiple modes of interaction, such as charge and hydrophobicity, to purify protein-based therapeutics. In this work, we performed molecular dynamics simulations of a series of multimodal cation-exchange ligands immobilized on a hydrophilic self-assembled monolayer surface at the commercially relevant surface density (1 ligand/nm2). We found that ligands that were flexible and terminated in a hydrophobic group had a propensity to aggregate on the surface, while less flexible ligands containing a hydrophobic group closer to the surface did not aggregate. For aggregating ligands, this resulted in the formation of a surface pattern that contained relatively large patches of hydrophobicity and charge whose sizes exceeded the length scale of the individual ligands. On the other hand, lowering the surface density to 1 ligand/3 nm2 reduced or eliminated this aggregation behavior. In addition, the introduction of a flexible linker (corresponding to the commercially available ligand) enhanced cluster formation and allowed aggregation to occur at lower surface densities. Further, the use of flexible linkers enabled hydrophobic groups to collapse to the surface, reducing their accessibility. Finally, we developed an approach for quantifying differences in the observed surface patterns by calculating distributions of the patch size and patch length. This clustering phenomenon is likely to play a key role in governing protein-surface interactions in multimodal chromatography. This new understanding of multimodal surfaces has important implications for developing improved predictive models and designing new classes of multimodal separation materials.

6.
Biophys J ; 110(1): 147-56, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26745418

RESUMO

In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shock waves on a membrane-bound ion channel. A planar shock wave was found to compress the ion channel upon impact, but the protein geometry resembles the crystal structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shock wave proved to be more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significant structural changes to the protein even at low piston velocities that are not able to directly cause poration of the membrane.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio Kv1.2/metabolismo , Simulação de Dinâmica Molecular , Som/efeitos adversos , Canal de Potássio Kv1.2/química , Estrutura Terciária de Proteína
7.
J Chem Phys ; 145(15): 154501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27782470

RESUMO

Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

8.
Biophys J ; 107(3): 630-641, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099802

RESUMO

The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R(2) = 0.94) and logPS (R(2) = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Modelos Biológicos , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/sangue
9.
Biophys J ; 106(2): L05-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24461026

RESUMO

Using fluorescence correlation spectroscopy, we measured a dissociation constant of 20 nM between EGFP-labeled LcrV from Yersinia pestis and its cognate membrane-bound protein YopB inserted into a lipid nanodisc. The combination of fluorescence correlation spectroscopy and nanodisc technologies provides a powerful approach to accurately measure binding constants of interactions between membrane bound and soluble proteins in solution. Straightforward sample preparation, acquisition, and analysis procedures make this combined technology attractive for accurately measuring binding kinetics for this important class of protein-protein interactions.


Assuntos
Antígenos de Bactérias/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Membranas Artificiais , Nanoestruturas/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Ligação Proteica
10.
PLoS One ; 19(6): e0304525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861498

RESUMO

The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.


Assuntos
Chlamydia trachomatis , Chlamydia trachomatis/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Estrutura Secundária de Proteína
11.
Chem Res Toxicol ; 26(10): 1444-54, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24028067

RESUMO

The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation.


Assuntos
Picrotoxina/metabolismo , Receptores de GABA-A/metabolismo , Regulação Alostérica , Sítios de Ligação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Acoplamento Molecular , Picrotoxina/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de GABA-A/química
12.
Age Ageing ; 42(4): 450-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23519133

RESUMO

BACKGROUND: telomere attrition has been associated with an increased risk of different age-related diseases and is widely accepted as a marker of cellular ageing. On the other hand, it is well known that cognitive function declines with age. The telomere length may therefore act as a marker for the pathway associated with cognitive function. METHODS: we examined telomere length and cognitive functions in a community-dwelling Chinese male population aged 65 years and above living in Hong Kong. The telomere length was measured by quantitative real-time PCR in 976 men. Cognitive function was assessed by Chinese (Cantonese) version of Mini-Mental State Exam and Community Screening Interview for Dementia. RESULTS: our result showed there was a significant association between telomere length, delayed recall (P = 0.007) and category verbal fluency (P = 0.048). These associations remained significant after adjustment for age and education. Further analysis using a cut-off score for MMSE, three-item recall and word list generation tests suggested that the telomere length was positively correlated with performance in these areas (P = 0.015). CONCLUSION: the findings support the association of telomere length and cognitive function and suggested that the telomere length may serve as a biological marker for cognitive decline.


Assuntos
Envelhecimento/genética , Envelhecimento/psicologia , Cognição , Vida Independente , Encurtamento do Telômero , Telômero/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Hong Kong , Humanos , Modelos Lineares , Masculino , Rememoração Mental , Escalas de Graduação Psiquiátrica , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Comportamento Verbal
13.
Sci Rep ; 13(1): 2680, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792632

RESUMO

Cyclodextrins (CDs) have been previously shown to display modest equilibrium binding affinities (Ka ~ 100-200 M-1) for the synthetic opioid analgesic fentanyl. In this work, we describe the synthesis of new CDs possessing extended thioalkylcarboxyl or thioalkylhydroxyl moieties and assess their binding affinity towards fentanyl hydrochloride. The optimal CD studied displays a remarkable affinity for the opioid of Ka = 66,500 M-1, the largest value reported for such an inclusion complex to date. One dimensional 1H Nuclear Magnetic Resonance (NMR) as well as Rotational Frame Overhauser Spectroscopy (2D-ROESY) experiments supported by molecular dynamics (MD) simulations suggest an unexpected binding behavior, with fentanyl able to bind the CD interior in one of two distinct orientations. Binding energies derived from the MD simulations work correlate strongly with NMR-derived affinities highlighting its utility as a predictive tool for CD candidate optimization. The performance of these host molecules portends their utility as platforms for medical countermeasures for opioid exposure, as biosensors, and in other forensic science applications.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Fentanila/química , Analgésicos Opioides , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular
14.
PLoS One ; 18(3): e0283181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996021

RESUMO

The ability of the cyclodextrin-oxime construct 6-OxP-CD to bind and degrade the nerve agents Cyclosarin (GF), Soman (GD) and S-[2-[Di(propan-2-yl)amino]ethyl] O-ethyl methylphosphonothioate (VX) has been studied using 31P-nuclear magnetic resonance (NMR) under physiological conditions. While 6-OxP-CD was found to degrade GF instantaneously under these conditions, it was found to form an inclusion complex with GD and significantly improve its degradation (t1/2 ~ 2 hrs) relative over background (t1/2 ~ 22 hrs). Consequently, effective formation of the 6-OxP-CD:GD inclusion complex results in the immediate neutralization of GD and thus preventing it from inhibiting its biological target. In contrast, NMR experiments did not find evidence for an inclusion complex between 6-OxP-CD and VX, and the agent's degradation profile was identical to that of background degradation (t1/2 ~ 24 hrs). As a complement to this experimental work, molecular dynamics (MD) simulations coupled with Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations have been applied to the study of inclusion complexes between 6-OxP-CD and the three nerve agents. These studies provide data that informs the understanding of the different degradative interactions exhibited by 6-OxP-CD with each nerve agent as it is introduced in the CD cavity in two different orientations (up and down). For its complex with GF, it was found that the oxime in 6-OxP-CD lies in very close proximity (PGF⋯OOxime ~ 4-5 Å) to the phosphorus center of GF in the 'downGF' orientation for most of the simulation accurately describing the ability of 6-OxP-CD to degrade this nerve agent rapidly and efficiently. Further computational studies involving the center of masses (COMs) for both components (GF and 6-OxP-CD) also provided some insight on the nature of this inclusion complex. Distances between the COMs (ΔCOM) lie closer in space in the 'downGF' orientation than in the 'upGF' orientation; a correlation that seems to hold true not only for GF but also for its congener, GD. In the case of GD, calculations for the 'downGD' orientation showed that the oxime functional group in 6-OxP-CD although lying in close proximity (PGD⋯OOxime ~ 4-5 Å) to the phosphorus center of the nerve agent for most of the simulation, adopts another stable conformation that increase this distance to ~ 12-14 Å, thus explaining the ability of 6-OxP-CD to bind and degrade GD but with less efficiency as observed experimentally (t1/2 ~ 4 hr. vs. immediate). Lastly, studies on the VX:6-OxP-CD system demonstrated that VX does not form a stable inclusion complex with the oxime-bearing cyclodextrin and as such does not interact in a way that is conducive to an accelerated degradation scenario. Collectively, these studies serve as a basic platform from which the development of new cyclodextrin scaffolds based on 6-OxP-CD can be designed in the development of medical countermeasures against these highly toxic chemical warfare agents.


Assuntos
Substâncias para a Guerra Química , Ciclodextrinas , Contramedidas Médicas , Agentes Neurotóxicos , Soman , Oximas , Simulação de Dinâmica Molecular , Compostos Organofosforados/química , Fósforo
15.
Sci Total Environ ; 902: 166101, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558066

RESUMO

The use of artificial light at night (ALAN) enables social and commercial activities for urban living. However, the excessive usage of lighting causes nuisance and waste of energy. Light is provided to illuminate target areas on the street level where activities take place, yet light can also cause trespass to residents at the floors above. While regulations are beginning to cover light design, simulation tools for the outdoor environment have also become more popular for assessing the design condition. Simulation tools allow visualisation of the impact of the selected light sources on those who are affected. However, this cause-and-effect relationship is not easy to determine in the complex urban environment. The current work offers a simple methodology that takes site survey results and correlates them with the simulation model to determine lighting impact on the investigated area in 3D. Four buildings in two mixed commercial and residential streets in Hong Kong were studied. Data collection from each residential building requires lengthy work and permission from each household. Therefore, a valid lighting simulation model could help determine the light pollution impact in the area. A light model using DIALux is developed and calibrated by correlating the simulated data with the actual measured data. The correlation value R2 achieved ranged from 0.95 to 0.99, verifying the accuracy of this model and matched from 340 lx to 46 lx for the lower to higher floors of one building and 10 lx to 4 lx for floors of another building. This model can also be applied to human health research, by providing light-level data on residential windows in an area or determining the environmental impact of a development project.

16.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324800

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

17.
Inorg Chem ; 51(12): 6803-12, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22671132

RESUMO

A panel of five zinc-chelated aza-macrocycle ligands and their ability to catalyze the hydration of carbon dioxide to bicarbonate, H(2)O + CO(2) → H(+) + HCO(3)(­), was investigated using quantum-mechanical methods and stopped-flow experiments. The key intermediates in the reaction coordinate were optimized using the M06-2X density functional with aug-cc-pVTZ basis set. Activation energies for the first step in the catalytic cycle, nucleophilic CO(2) addition, were calculated from gas-phase optimized transition-state geometries. The computationally derived trend in activation energies was found to not correspond with the experimentally observed rates. However, activation energies for the second, bicarbonate release step, which were estimated using calculated bond dissociation energies, provided good agreement with the observed trend in rate constants. Thus, the joint theoretical and experimental results provide evidence that bicarbonate release, not CO(2) addition, may be the rate-limiting step in CO(2) hydration by zinc complexes of aza-macrocyclic ligands. pH-independent rate constants were found to increase with decreasing Lewis acidity of the ligand-Zn complex, and the trend in rate constants was correlated with molecular properties of the ligands. It is suggested that tuning catalytic efficiency through the first coordination shell of Zn(2+) ligands is predominantly a balance between increasing charge-donating character of the ligand and maintaining the catalytically relevant pK(a) below the operating pH.


Assuntos
Compostos Aza/química , Materiais Biomiméticos/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Teoria Quântica , Zinco/química , Bicarbonatos/síntese química , Bicarbonatos/química , Materiais Biomiméticos/metabolismo , Dióxido de Carbono/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Catálise , Ligantes , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Compostos Organometálicos/síntese química
18.
Mol Cell Proteomics ; 9(10): 2205-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20368288

RESUMO

Nuclear pore complexes (NPCs) gate the only conduits for nucleocytoplasmic transport in eukaryotes. Their gate is formed by nucleoporins containing large intrinsically disordered domains with multiple phenylalanine-glycine repeats (FG domains). In combination, these are hypothesized to form a structurally and chemically homogeneous network of random coils at the NPC center, which sorts macromolecules by size and hydrophobicity. Instead, we found that FG domains are structurally and chemically heterogeneous. They adopt distinct categories of intrinsically disordered structures in non-random distributions. Some adopt globular, collapsed coil configurations and are characterized by a low charge content. Others are highly charged and adopt more dynamic, extended coil conformations. Interestingly, several FG nucleoporins feature both types of structures in a bimodal distribution along their polypeptide chain. This distribution functionally correlates with the attractive or repulsive character of their interactions with collapsed coil FG domains displaying cohesion toward one another and extended coil FG domains displaying repulsion. Topologically, these bipartite FG domains may resemble sticky molten globules connected to the tip of relaxed or extended coils. Within the NPC, the crowding of FG nucleoporins and the segregation of their disordered structures based on their topology, dimensions, and cohesive character could force the FG domains to form a tubular gate structure or transporter at the NPC center featuring two separate zones of traffic with distinct physicochemical properties.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Glicina/química , Dados de Sequência Molecular , Fenilalanina/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
19.
Antibodies (Basel) ; 11(3)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997345

RESUMO

The accurate and efficient calculation of protein-protein binding affinities is an essential component in antibody and antigen design and optimization, and in computer modeling of antibody affinity maturation. Such calculations remain challenging despite advances in computer hardware and algorithms, primarily because proteins are flexible molecules, and thus, require explicit or implicit incorporation of multiple conformational states into the computational procedure. The astronomical size of the amino acid sequence space further compounds the challenge by requiring predictions to be computed within a short time so that many sequence variants can be tested. In this study, we compare three classes of methods for antibody/antigen (Ab/Ag) binding affinity calculations: (i) a method that relies on the physical separation of the Ab/Ag complex in equilibrium molecular dynamics (MD) simulations, (ii) a collection of 18 scoring functions that act on an ensemble of structures created using homology modeling software, and (iii) methods based on the molecular mechanics-generalized Born surface area (MM-GBSA) energy decomposition, in which the individual contributions of the energy terms are scaled to optimize agreement with the experiment. When applied to a set of 49 antibody mutations in two Ab/HIV gp120 complexes, all of the methods are found to have modest accuracy, with the highest Pearson correlations reaching about 0.6. In particular, the most computationally intensive method, i.e., MD simulation, did not outperform several scoring functions. The optimized energy decomposition methods provided marginally higher accuracy, but at the expense of requiring experimental data for parametrization. Within each method class, we examined the effect of the number of independent computational replicates, i.e., modeled structures or reinitialized MD simulations, on the prediction accuracy. We suggest using about ten modeled structures for scoring methods, and about five simulation replicates for MD simulations as a rule of thumb for obtaining reasonable convergence. We anticipate that our study will be a useful resource for practitioners working to incorporate binding affinity calculations within their protein design and optimization process.

20.
Sci Total Environ ; 837: 155681, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569663

RESUMO

With rapid urbanization, the use of external lighting to illuminate cities for night-time activity is on the rise worldwide. Many studies have suggested the excessive use of external lighting causes light pollution, which harms human health and leads to energy wastage. Although more awareness has been raised, there are not many regulations and guidelines available. As one of the cities most affected by light pollution in the world, Hong Kong has started exploring this issue within the general and business communities. However, studies that quantitatively evaluate the problem of light pollution in this city are lacking. This study aimed to assess light pollution quantitatively through measurement and numerical modelling. To achieve this, measurement protocols were developed, and site measurements were carried out in one of the known problem areas, Sai Yeung Choi Street in Mong Kok district. Through this exercise, both vertical and horizontal illuminances on the street level and the light distribution along the street were determined. An average level of 250 lx for the vertical illuminance was found, which was 3-4 times higher than the recommended brightness for normal activity. The light environment of the measured area was also modelled with the simulation program DIALux. This effort complemented the measurements by providing a means to increase the resolution on the light variation and to visualize light pollution in a 3D environment. The simulation results were verified by correlating the numerical model with measurements. The correlated model was exercised in a subsequent sensitivity study to predict possible outcomes with changing lighting pattern and lighting lumen level. This study serves to quantify this issue, which helps with the further development of effective solutions.


Assuntos
Poluição Luminosa , Urbanização , Cidades , Hong Kong , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA