Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126699

RESUMO

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Assuntos
Retinopatia Diabética , Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Retinopatia Diabética/metabolismo
2.
Pflugers Arch ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396259

RESUMO

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

3.
J Transl Med ; 20(1): 21, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998409

RESUMO

BACKGROUND: Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. METHODS: First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. RESULTS: In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. CONCLUSIONS: Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.


Assuntos
Doenças Musculares , Animais , Humanos , Corpos de Inclusão/metabolismo , Indóis , Camundongos , Músculos/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Mutação , Pirimidinas , Proteína com Valosina/metabolismo
4.
J Lipid Res ; 62: 100040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32493732

RESUMO

Driven by the energy of a photon, the visual pigments in rod and cone photoreceptor cells isomerize 11-cis-retinal to the all-trans configuration. This photochemical reaction initiates the signal transduction pathway that eventually leads to the transmission of a visual signal to the brain and leaves the opsins insensitive to further light stimulation. For the eye to restore light sensitivity, opsins require recharging with 11-cis-retinal. This trans-cis back conversion is achieved through a series of enzymatic reactions composing the retinoid (visual) cycle. Although it is evident that the classical retinoid cycle is critical for vision, the existence of an adjunct pathway for 11-cis-retinal regeneration has been debated for many years. Retinal pigment epithelium (RPE)-retinal G protein-coupled receptor (RGR) has been identified previously as a mammalian retinaldehyde photoisomerase homologous to retinochrome found in invertebrates. Using pharmacological, genetic, and biochemical approaches, researchers have now established the physiological relevance of the RGR in 11-cis-retinal regeneration. The photoisomerase activity of RGR in the RPE and Müller glia explains how the eye can remain responsive in daylight. In this review, we will focus on retinoid metabolism in the eye and visual chromophore regeneration mediated by RGR.


Assuntos
Retinaldeído
5.
Mol Pharmacol ; 100(5): 470-479, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34393108

RESUMO

We compared monotherapies and combinations of therapies that regulate G-protein-coupled receptors (GPCRs) with respect to their abilities to inhibit early stages of diabetic retinopathy (DR) in streptozotocin-diabetic mice. Metoprolol (MTP; 0.04-1.0 mg/kg b.wt./day), bromocriptine (BRM; 0.01-0.1 mg/kg b.wt./day), doxazosin (DOX; 0.01-1.0 mg/kg b.wt./day), or tamsulosin (TAM; 0.05-0.25 mg/kg b.wt./day) were injected individually daily for 2 months in dose-response studies to assess their effects on the diabetes-induced increases in retinal superoxide and leukocyte-mediated cytotoxicity against vascular endothelial cells, both of which abnormalities have been implicated in the development of DR. Each of the individual drugs inhibited the diabetes-induced increase in retinal superoxide at the higher concentrations tested, but the inhibition was lost at lower doses. To determine whether combination therapies had superior effects over individual drugs, we intentionally selected for each drug a low dose that had little or no effect on the diabetes-induced retinal superoxide for use separately or in combinations in 8-month studies of retinal function, vascular permeability, and capillary degeneration in diabetes. At the low doses used, combinations of the drugs generally were more effective than individual drugs, but the low-dose MTP alone totally inhibited diabetes-induced reduction in a vision task, BRM or DOX alone totally inhibited the vascular permeability defect, and DOX alone totally inhibited diabetes-induced degeneration of retinal capillaries. Although low-dose MTP, BRM, DOX, or TAM individually had beneficial effects on some endpoints, combination of the therapies better inhibited the spectrum of DR lesions evaluated. SIGNIFICANCE STATEMENT: The pathogenesis of early stages of diabetic retinopathy remains incompletely understood, but multiple different cell types are believed to be involved in the pathogenic process. We have compared the effects of monotherapies to those of combinations of drugs that regulate GPCR signaling pathways with respect to their relative abilities to inhibit the development of early diabetic retinopathy.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Hipoglicemiantes/administração & dosagem , Receptores Adrenérgicos/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/patologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
6.
Hum Mol Genet ; 28(19): 3309-3322, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294445

RESUMO

The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.


Assuntos
Encéfalo/crescimento & desenvolvimento , Glutamato Descarboxilase/genética , Interneurônios/metabolismo , Proteínas de Membrana Lisossomal/genética , Lipofuscinoses Ceroides Neuronais/genética , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteínas Repressoras/genética , Tubulina (Proteína)/metabolismo
7.
J Pharmacol Exp Ther ; 378(1): 31-41, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931547

RESUMO

CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Indóis/farmacologia , Pirimidinas/farmacologia , Retina/efeitos dos fármacos , Proteína com Valosina/antagonistas & inibidores , Animais , Bovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Relação Dose-Resposta a Droga , Eletrorretinografia/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa/métodos , Retina/metabolismo , Proteína com Valosina/metabolismo
8.
J Biol Chem ; 294(50): 19137-19154, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31694912

RESUMO

Photoisomerization of the 11-cis-retinal chromophore of rod and cone visual pigments to an all-trans-configuration is the initiating event for vision in vertebrates. The regeneration of 11-cis-retinal, necessary for sustained visual function, is an endergonic process normally conducted by specialized enzyme systems. However, 11-cis-retinal also can be formed through reverse photoisomerization from all-trans-retinal. A nonvisual opsin known as retinal pigment epithelium (RPE)-retinal G-protein-coupled receptor (RGR) was previously shown to mediate visual chromophore regeneration in photic conditions, but conflicting results have cast doubt on its role as a photoisomerase. Here, we describe high-level production of 11-cis-retinal from RPE membranes stimulated by illumination at a narrow band of wavelengths. This activity was associated with RGR and enhanced by cellular retinaldehyde-binding protein (CRALBP), which binds the 11-cis-retinal produced by RGR and prevents its re-isomerization to all-trans-retinal. The activity was recapitulated with cells heterologously expressing RGR and with purified recombinant RGR. Using an RGR variant, K255A, we confirmed that a Schiff base linkage at Lys-255 is critical for substrate binding and isomerization. Single-cell RNA-Seq analysis of the retina and RPE tissue confirmed that RGR is expressed in human and bovine RPE and Müller glia, whereas mouse RGR is expressed in RPE but not in Müller glia. These results provide key insights into the mechanisms of physiological retinoid photoisomerization and suggest a novel mechanism by which RGR, in concert with CRALBP, regenerates the visual chromophore in the RPE under sustained light conditions.


Assuntos
Epitélio Pigmentado da Retina/química , Retinaldeído/biossíntese , Animais , Bovinos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/química , Estereoisomerismo
9.
Hum Mol Genet ; 25(17): 3810-3823, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466183

RESUMO

Age-related macular degeneration (AMD), affecting the retinal pigment epithelium (RPE), is the leading cause of blindness in middle-aged and older people in developed countries. Genetic and environmental risk factors have been identified, but no effective cure exists. Using a mouse model we show that a transmembrane prolyl 4-hydroxylase (P4H-TM), which participates in the oxygen-dependent regulation of the hypoxia-inducible factor (HIF), is a potential novel candidate gene for AMD. We show that P4h-tm had its highest expression levels in the mouse RPE and brain, heart, lung, skeletal muscle and kidney. P4h-tm-/- mice were fertile and had a normal life span. Lack of P4h-tm stabilized HIF-1α in cortical neurons under normoxia, while in hypoxia it increased the expression of certain HIF target genes in tissues with high endogenous P4h-tm expression levels more than in wild-type mice. Renal erythropoietin levels increased in P4h-tm-/- mice with aging, but the resulting ∼2-fold increase in erythropoietin serum levels did not lead to erythrocytosis. Instead, accumulation of lipid-containing lamellar bodies in renal tubuli was detected in P4h-tm-/- mice with aging, resulting in inflammation and fibrosis, and later glomerular sclerosis and albuminuria. Lack of P4h-tm was associated with retinal thinning, rosette-like infoldings and drusen-like structure accumulation in RPE with aging, as is characteristic of AMD. Photoreceptor recycling was compromised, and electroretinograms revealed functional impairment of the cone pathway in adult P4h-tm-/- mice and cone and rod deficiency in middle-aged mice. P4H-TM is therefore imperative for normal vision, and potentially a novel candidate for age-induced diseases, such as AMD.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Nefropatias/genética , Rim/patologia , Degeneração Macular/genética , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Eritropoetina/sangue , Eritropoetina/metabolismo , Humanos , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Pulmão/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Distribuição Tecidual
10.
J Pharmacol Exp Ther ; 364(2): 207-220, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162627

RESUMO

Degeneration of retinal photoreceptor cells can arise from environmental and/or genetic causes. Since photoreceptor cells, the retinal pigment epithelium (RPE), neurons, and glial cells of the retina are intimately associated, all cell types eventually are affected by retinal degenerative diseases. Such diseases often originate either in rod and/or cone photoreceptor cells or the RPE. Of these, cone cells located in the central retina are especially important for daily human activity. Here we describe the protection of cone cells by a combination therapy consisting of the G protein-coupled receptor modulators metoprolol, tamsulosin, and bromocriptine. These drugs were tested in Abca4-/-Rdh8-/- mice, a preclinical model for retinal degeneration. The specificity of these drugs was determined with an essentially complete panel of human G protein-coupled receptors. Significantly, the combination of metoprolol, tamsulosin, and bromocriptine had no deleterious effects on electroretinographic responses of wild-type mice. Moreover, putative G protein-coupled receptor targets of these drugs were shown to be expressed in human and mouse eyes by RNA sequencing and quantitative polymerase chain reaction. Liquid chromatography together with mass spectrometry using validated internal standards confirmed that metoprolol, tamsulosin, and bromocriptine individually or together penetrate the eye after either intraperitoneal delivery or oral gavage. Collectively, these findings support human trials with combined therapy composed of lower doses of metoprolol, tamsulosin, and bromocriptine designed to safely impede retinal degeneration associated with certain genetic diseases (e.g., Stargardt disease). The same low-dose combination also could protect the retina against diseases with complex or unknown etiologies such as age-related macular degeneration.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/prevenção & controle , Animais , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
11.
Glia ; 64(9): 1492-507, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301579

RESUMO

ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs type 4) is a metalloprotease capable to degrade chondroitin sulfate proteoglycans leading to cartilage destruction during arthritis or to neuroplasticity during spinal cord injury (SCI). Although ADAMTS-4 is an inflammatory-regulated enzyme, its role during inflammation has never been investigated. The aim of this study was to investigate the role of ADAMTS-4 in neuroinflammation. First, we evidenced an increase of ADAMTS-4 expression in the ischemic brain hemisphere of mouse and human patients suffering from ischemic stroke. Then, we described that ADAMTS-4 has predominantly an anti-inflammatory effect in the CNS. Treatment of primary microglia or astrocyte cultures with low doses of a human recombinant ADAMTS-4 prior to LPS exposure decreased NO production and the synthesis/release of pro-inflammatory cytokines including NOS2, CCL2, TNF-α, IL-1ß and MMP-9. Accordingly, when cell cultures were transfected with silencing siRNA targeting ADAMTS-4 prior to LPS exposure, the production of NO and the synthesis/release of pro-inflammatory cytokines were increased. Finally, the feasibility of ADAMTS-4 to modulate neuroinflammation was investigated in vivo after permanent middle cerebral artery occlusion in mice. Although ADAMTS-4 treatment did not influence the lesion volume, it decreased astrogliosis and macrophage infiltration, and increased the number of microglia expressing arginase-1, a marker of alternatively activated cells with inflammation inhibiting functions. Additionally, ADAMTS-4 increased the production of IL-10 and IL-6 in the peri-ischemic area. By having anti-inflammatory and neuroregenerative roles, ADAMTS-4 may represent an interesting target to treat acute CNS injuries, such as ischemic stroke, SCI or traumatic brain injury. GLIA 2016;64:1492-1507.


Assuntos
Proteína ADAMTS4/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-10/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
ACS Med Chem Lett ; 15(7): 1049-1056, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015263

RESUMO

Iso-dimethyltryptamine (isoDMT) analogues with heterocyclic substitutions at the indole C(3) were prepared in a hydrogen autotransfer alkylation and tested in combination with natural and unnatural clavine alkaloids in a model of light-induced retinal degeneration for protection against retinal degeneration. On the basis of measurements with optical coherence tomography and electroretinography, three compounds showed better efficacy than the positive control bromocriptine at equivalent systemically administered doses. These studies provide further insights into the role of serotonin receptors and their potential therapeutic applications in ocular diseases.

13.
J Alzheimers Dis ; 97(2): 927-937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38143367

RESUMO

BACKGROUND: Increasing evidence has highlighted retinal impairments in neurodegenerative diseases. Dominant mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the accumulation of TDP-43 in the cytoplasm is a pathological hallmark of ALS, frontotemporal dementia (FTD), and many other neurodegenerative diseases. OBJECTIVE: While homozygous transgenic mice expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) experience premature death, hemizygous TDP-43M337V mice do not suffer sudden death, but they exhibit age-dependent motor-coordinative and cognitive deficits. This study aims to leverage the hemizygous TDP-43M337V mice as a valuable ALS/FTD disease model for the assessment also of retinal changes during the disease progression. METHODS: We evaluated the retinal function of young TDP-43M337V mice by full field electroretinogram (ERG) recordings. RESULTS: At 3-4 months of age, well before the onset of brain dysfunction at 8 months, the ERG responses were notably impaired in the retinas of young female TDP-43M337V mice in contrast to their male counterparts and age-matched non-transgenic mice. Mitochondria have been implicated as critical targets of TDP-43. Further investigation revealed that significant changes in the key regulators of mitochondrial dynamics and bioenergetics were only observed in the retinas of young female TDP-43M337V mice, while these alterations were not present in the brains of either gender. CONCLUSIONS: Together our findings suggest a sex-specific vulnerability within the retina in the early disease stage, and highlight the importance of retinal changes and mitochondrial markers as potential early diagnostic indicators for ALS, FTD, and other TDP-43 related neurodegenerative conditions.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Camundongos , Humanos , Masculino , Feminino , Animais , Camundongos Transgênicos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retina/patologia
14.
Nat Commun ; 15(1): 5943, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009597

RESUMO

Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6ßrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.


Assuntos
Modelos Animais de Doenças , Reposicionamento de Medicamentos , Retinose Pigmentar , Animais , Camundongos , Cães , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Mutação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout , Amaurose Congênita de Leber/tratamento farmacológico , Amaurose Congênita de Leber/genética , Bromocriptina/farmacologia , Bromocriptina/uso terapêutico , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Humanos , Quimioterapia Combinada , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Feminino , AMP Cíclico/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Masculino , Cálcio/metabolismo
15.
Neural Regen Res ; 18(4): 701-707, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204825

RESUMO

The majority of inherited retinal degenerative diseases and dry age-related macular degeneration are characterized by decay of the outer retina and photoreceptors, which leads to progressive loss of vision. The inner retina, including second- and third-order retinal neurons, also shows aberrant structural changes at all stages of degeneration. Müller glia, the major glial cells maintain retinal homeostasis, activating and rearranging immediately in response to photoreceptor stress. These phenomena are collectively known as retinal remodeling and are anatomically well described, but their impact on visual function is less well characterized. Retinal remodeling has traditionally been considered a detrimental chain of events that decreases visual function. However, emerging evidence from functional assays suggests that remodeling could also be a part of a survival mechanism wherein the inner retina responds plastically to outer retinal degeneration. The visual system´s first synapses between the photoreceptors and bipolar cells undergo rewiring and functionally compensate to maintain normal signal output to the brain. Distinct classes of retinal ganglion cells remain even after the massive loss of photoreceptors. Müller glia possess the regenerative potential for retinal recovery and possibly exert adaptive transcriptional changes in response to neuronal loss. These types of homeostatic changes could potentially explain the well-maintained visual function observed in patients with inherited retinal degenerative diseases who display prominent anatomic retinal pathology. This review will focus on our current understanding of retinal neuronal and Müller glial adaptation for the potential preservation of retinal activity during photoreceptor degeneration. Targeting retinal self-compensatory responses could help generate universal strategies to delay sensory disease progression.

16.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35701168

RESUMO

Inherited retinal degenerative diseases are a prominent cause of blindness. Although mutations causing death of photoreceptors are mostly known, the pathophysiology downstream in the inner retina and along the visual pathway is incompletely characterized in the earliest disease stages. Here, we investigated retinal, midbrain and cortical visual function using electroretinography (ERG), the optomotor response (OMR), visual evoked potentials (VEPs), respectively, and single unit electrophysiology at the primary visual cortex (V1) in light-adapted juvenile (approximately one-month-old) and young adult (three-month-old) RhoP23H/WT mice, representative of early-stage retinitis pigmentosa (RP). Photopic ERG revealed up to ∼30% hypersensitivity to light in RhoP23H/WT mice, as measured by the light intensity required to generate half-maximal b-wave (I50 parameter). RhoP23H/WT mice also showed increased OMRs toward low spatial frequency (SF) drifting gratings, indicative of visual overexcitation at the midbrain level. At the V1 level, VEPs and single-cell recordings revealed prominent hyperexcitability in the juvenile RhoP23H/WT mice. Mean VEP amplitudes for light ON stimuli were nearly doubled in one-month-old RhoP23H/WT mice compared with controls, and more than doubled for light OFF. Single-cell recordings showed a significantly increased spontaneous V1 neuron firing in the RhoP23H/WT mice, and persistent contrast and temporal sensitivities. In contrast, direction selectivity was severely compromised. Our data suggest that during early RP, the visual pathway becomes hyperexcited. This could have both compensatory and deleterious consequences for visual behavior. Further studies on the mechanisms of hyperexcitability are warranted as this could lead to therapeutic interventions for RP.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Potenciais Evocados Visuais , Camundongos , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Rodopsina/genética
17.
Curr Biol ; 32(20): 4538-4546.e5, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36152631

RESUMO

Despite the recent emergence of multiple cellular and molecular strategies to restore vision in retinal disorders, it remains unclear to what extent central visual circuits can recover when retinal defects are corrected in adulthood. We addressed this question in an Lrat-/- mouse model of Leber congenital amaurosis (LCA) in which retinal light sensitivity and optomotor responses are partially restored by 9-cis-retinyl acetate administration in adulthood. Following treatment, two-photon calcium imaging revealed increases in the number and response amplitude of visually responsive neurons in the primary visual cortex (V1). In particular, retinoid treatment enhanced responses from the ipsilateral eye, restoring the normal balance of eye-specific responses in V1. Additionally, the treatment rescued the modulation of cortical responses by arousal. These findings illustrate the significant plasticity of the adult central visual system and underscore the therapeutic potential of retinoid administration for adults with retinal diseases.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/tratamento farmacológico , Retinoides/farmacologia , Retinoides/uso terapêutico , cis-trans-Isomerases , Cálcio , Retina , Proteínas do Olho
18.
Nat Commun ; 13(1): 1830, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383196

RESUMO

Leber congenital amaurosis (LCA) is the most common cause of inherited retinal degeneration in children. LCA patients with RPE65 mutations show accelerated cone photoreceptor dysfunction and death, resulting in early visual impairment. It is therefore crucial to develop a robust therapy that not only compensates for lost RPE65 function but also protects photoreceptors from further degeneration. Here, we show that in vivo correction of an Rpe65 mutation by adenine base editor (ABE) prolongs the survival of cones in an LCA mouse model. In vitro screening of ABEs and sgRNAs enables the identification of a variant that enhances in vivo correction efficiency. Subretinal delivery of ABE and sgRNA corrects up to 40% of Rpe65 transcripts, restores cone-mediated visual function, and preserves cones in LCA mice. Single-cell RNA-seq reveals upregulation of genes associated with cone phototransduction and survival. Our findings demonstrate base editing as a potential gene therapy that confers long-lasting retinal protection.


Assuntos
Amaurose Congênita de Leber , Degeneração Retiniana , cis-trans-Isomerases , Animais , Proteínas do Olho/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Camundongos , Camundongos Knockout , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/complicações , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , cis-trans-Isomerases/genética
19.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015730

RESUMO

Adiponectin receptor 1 (ADIPOR1) is a lipid and glucose metabolism regulator that possesses intrinsic ceramidase activity. Mutations of the ADIPOR1 gene have been associated with nonsyndromic and syndromic retinitis pigmentosa. Here, we show that the absence of AdipoR1 in mice leads to progressive photoreceptor degeneration, significant reduction of electroretinogram amplitudes, decreased retinoid content in the retina, and reduced cone opsin expression. Single-cell RNA-Seq results indicate that ADIPOR1 encoded the most abundantly expressed ceramidase in mice and one of the 2 most highly expressed ceramidases in the human retina, next to acid ceramidase ASAH1. We discovered an accumulation of ceramides in the AdipoR1-/- retina, likely due to insufficient ceramidase activity for healthy retina function, resulting in photoreceptor death. Combined treatment with desipramine/L-cycloserine (DC) lowered ceramide levels and exerted a protective effect on photoreceptors in AdipoR1-/- mice. Moreover, we observed improvement in cone-mediated retinal function in the DC-treated animals. Lastly, we found that prolonged DC treatment corrected the electrical responses of the primary visual cortex to visual stimuli, approaching near-normal levels for some parameters. These results highlight the importance of ADIPOR1 ceramidase in the retina and show that pharmacological inhibition of ceramide generation can provide a therapeutic strategy for ADIPOR1-related retinopathy.


Assuntos
Ceramidases/antagonistas & inibidores , DNA/genética , Mutação , Receptores de Adiponectina/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Adiponectina/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
20.
Nat Biomed Eng ; 5(2): 169-178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33077938

RESUMO

Cytosine base editors and adenine base editors (ABEs) can correct point mutations predictably and independent of Cas9-induced double-stranded DNA breaks (which causes substantial indel formation) and homology-directed repair (which typically leads to low editing efficiency). Here, we show, in adult mice, that a subretinal injection of a lentivirus expressing an ABE and a single-guide RNA targeting a de novo nonsense mutation in the Rpe65 gene corrects the pathogenic mutation with up to 29% efficiency and with minimal formation of indel and off-target mutations, despite the absence of the canonical NGG sequence as a protospacer-adjacent motif. The ABE-treated mice displayed restored RPE65 expression and retinoid isomerase activity, and near-normal levels of retinal and visual functions. Our findings motivate the further testing of ABEs for the treatment of inherited retinal diseases and for the correction of pathological mutations with non-canonical protospacer-adjacent motifs.


Assuntos
Adenina/metabolismo , Edição de Genes/métodos , Doenças Retinianas/metabolismo , Visão Ocular/fisiologia , Animais , Proteína 9 Associada à CRISPR/metabolismo , Códon sem Sentido/genética , Vetores Genéticos/fisiologia , Lentivirus/fisiologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA