Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 83(9): 1502-1518.e10, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086726

RESUMO

2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA , Imunidade Inata
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35022217

RESUMO

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Endossomos/metabolismo , SARS-CoV-2 , Nexinas de Classificação/química , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cristalografia por Raios X , Citosol/metabolismo , Endocitose , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Homeostase , Humanos , Lentivirus , Lisossomos/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Nexinas de Classificação/metabolismo , Internalização do Vírus
3.
Angew Chem Int Ed Engl ; 62(14): e202300867, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36749115

RESUMO

Mimicking Nature's polymeric protein architectures by designing hosts with binding cavities screened from bulk solvent is a promising approach to achieving anion recognition in competitive media. Accomplishing this, however, can be synthetically demanding. Herein we present a synthetically tractable approach, by directly incorporating potent supramolecular anion-receptive motifs into a polymeric scaffold, tuneable through a judicious selection of the co-monomer. A comprehensive analysis of anion recognition and sensing is demonstrated with redox-active, halogen bonding polymeric hosts. Notably, the polymeric hosts consistently outperform their monomeric analogues, with especially large halide binding enhancements of ca. 50-fold observed in aqueous-organic solvent mixtures. These binding enhancements are rationalised by the generation and presentation of low dielectric constant binding microenvironments from which there is appreciable solvent exclusion.

4.
Chemistry ; 27(70): 17700-17706, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34705312

RESUMO

The development of real-life applicable ion sensors, in particular those capable of repeat use and long-term monitoring, remains a formidable challenge. Herein, we demonstrate, in a proof-of-concept, the real-time voltammetric sensing of anions under continuous flow in a 3D-printed microfluidic system. Electro-active anion receptive halogen bonding (XB) and hydrogen bonding (HB) ferrocene-isophthalamide-(iodo)triazole films were employed as exemplary sensory interfaces. Upon exposure to anions, the cathodic perturbations of the ferrocene redox-transducer are monitored by repeat square-wave voltammetry (SWV) cycling and peak fitting of the voltammograms by a custom-written MATLAB script. This enables the facile and automated data processing of thousands of SW scans and is associated with an over one order-of-magnitude improvement in limits of detection. In addition, this improved analysis enables tuning of the measurement parameters such that high temporal resolution can be achieved. More generally, this new flow methodology is extendable to a variety of other analytes, including cations, and presents an important step towards translation of voltammetric ion sensors from laboratory to real-world applications.


Assuntos
Halogênios , Ânions , Cátions , Ligação de Hidrogênio , Oxirredução
5.
Anal Chem ; 92(5): 3508-3511, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32046485

RESUMO

Methods that enable the sensitive and label-free detection of protein biomarkers are well-positioned to make potentially significant contributions to diagnostics and derived personalized healthcare. In support of this goal, a myriad of (electrochemical) methodologies have been developed; recently, electrochemical capacitance spectroscopy emerged as an impedance-derived approach which, in employing surface-confined redox-transducers, circumvents problems associated with the use of solution-phase redox-probes. Herein, we expand this scope by utilizing phytic acid-doped polyaniline as a novel redox-charging polymer support enabling the reagentless assaying of C-reactive protein in serum with good sensitivity. The construction of the sensory interface via electropolymerization allows facile tuning of the surface coverage and redox (capacitive) properties of the polymers, which, in turn, modulate both assay selectivity, fouling, and sensitivity. Significantly, this methodology is readily extendable to a wide range of electrode materials and analytes.


Assuntos
Compostos de Anilina/química , Proteína C-Reativa/química , Capacitância Elétrica , Eletroquímica , Oxirredução , Propriedades de Superfície
6.
Chemistry ; 24(67): 17788-17795, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30175502

RESUMO

The ability of natural enzymes to regulate their guest binding affinities and preferences through the use of co-ligands which alter the features of the binding site is fundamental to biological homeostatic control. Herein, the rarely exploited orthosteric control of guest binding is demonstrated using neutral halogen bonding [2]rotaxanes, in which a chemical stimulus (acid) interacting with the interlocked host binding site switches the host's native guest preference from metal cations to anions. When neutral, the rotaxanes exhibit pronounced transition metal cation affinity and comparatively weak anion binding properties. However, the addition of acid attenuates the rotaxanes' ability to coordinate cations, while concurrently enabling strong binding of halides through charge assisted halogen bonding and hydrogen bonding interactions in competitive aqueous solvent media. The appendage of a fluorescent anthracene reporter group to the rotaxane framework also enables diagnostic sensory responses to cation/anion binding.

7.
Faraday Discuss ; 203: 245-255, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28726932

RESUMO

A family of cationic halogen bonding [2]rotaxanes have been synthesised via an active-metal template synthetic strategy. 1H NMR spectroscopic anion titration investigations reveal these interlocked host systems recognize halides selectively over oxoanions in aqueous-organic solvent media. Furthermore, systematically modulating the rigidity and size of the rotaxanes' anion binding cavities via metal complexation, as well as by varying the number of halogen bond-donor groups in the axle component, was found to dramatically influence halide anion selectivity.

8.
J Craniofac Surg ; 26(2): e119-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25699527

RESUMO

Hemangioblastomas are benign tumors that are frequently associated with peritumoral cysts; however, their early characteristics before cyst formation remain unclear. In this article, the authors present a novel case of a cerebellar hemangioblastoma presenting as a small solid lesion with significant edema. Surgery was performed to resect the tumor, and a follow-up magnetic resonance imaging scan revealed complete excision of the mass and resolution of the cerebellar edema. Histological examination confirmed that the lesion was a hemangioblastoma. This is the only report in the literature to describe the imaging and histopathologic characteristics of an initial hemangioblastoma in the cerebellum.


Assuntos
Neoplasias Cerebelares/diagnóstico , Cerebelo/patologia , Edema/etiologia , Hemangioblastoma/diagnóstico , Imageamento por Ressonância Magnética/métodos , Estadiamento de Neoplasias , Neoplasias Cerebelares/complicações , Edema/diagnóstico , Feminino , Hemangioblastoma/complicações , Humanos , Pessoa de Meia-Idade
9.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 746-757, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428848

RESUMO

The spike protein (S) of SARS-CoV-2 is the major target of neutralizing antibodies and vaccines. Antibodies that target the receptor-binding domain (RBD) of S have high potency in preventing viral infection. The ongoing evolution of SARS-CoV-2, especially mutations occurring in the RBD of new variants, has severely challenged the development of neutralizing antibodies and vaccines. Here, a murine monoclonal antibody (mAb) designated E77 is reported which engages the prototype RBD with high affinity and potently neutralizes SARS-CoV-2 pseudoviruses. However, the capability of E77 to bind RBDs vanishes upon encountering variants of concern (VOCs) which carry the N501Y mutation, such as Alpha, Beta, Gamma and Omicron, in contrast to its performance with the Delta variant. To explain the discrepancy, cryo-electron microscopy was used to analyze the structure of an RBD-E77 Fab complex, which reveals that the binding site of E77 on RBD belongs to the RBD-1 epitope, which largely overlaps with the binding site of human angiotensin-converting enzyme 2 (hACE2). Both the heavy chain and the light chain of E77 interact extensively with RBD and contribute to the strong binding of RBD. E77 employs CDRL1 to engage Asn501 of RBD and the Asn-to-Tyr mutation could generate steric hindrance, abolishing the binding. In sum, the data provide the landscape for an in-depth understanding of immune escape of VOCs and rational antibody engineering against emerging variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Microscopia Crioeletrônica , Anticorpos Neutralizantes
10.
Nat Commun ; 14(1): 4405, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479708

RESUMO

Multiple SARS-CoV-2 Omicron sub-variants, such as BA.2, BA.2.12.1, BA.4, and BA.5, emerge one after another. BA.5 has become the dominant strain worldwide. Additionally, BA.2.75 is significantly increasing in some countries. Exploring their receptor binding and interspecies transmission risk is urgently needed. Herein, we examine the binding capacities of human and other 28 animal ACE2 orthologs covering nine orders towards S proteins of these sub-variants. The binding affinities between hACE2 and these sub-variants remain in the range as that of previous variants of concerns (VOCs) or interests (VOIs). Notably, R493Q reverse mutation enhances the bindings towards ACE2s from humans and many animals closely related to human life, suggesting an increased risk of cross-species transmission. Structures of S/hACE2 or RBD/hACE2 complexes for these sub-variants and BA.2 S binding to ACE2 of mouse, rat or golden hamster are determined to reveal the molecular basis for receptor binding and broader interspecies recognition.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Cricetinae , Humanos , Animais , Camundongos , Ratos , SARS-CoV-2/genética , Mesocricetus , Mutação
11.
Front Mol Neurosci ; 15: 927530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117918

RESUMO

Amyloid-ß (Aß) has long been considered as one of the most important pathogenic factors in Alzheimer's disease (AD), but the specific pathogenic mechanism of Aß is still not completely understood. In recent years, the development of structural biology technology has led to new understandings about Aß molecular structures, Aß generation and clearance from the brain and peripheral tissues, and its pathological toxicity. The purpose of the review is to discuss Aß metabolism and toxicity, and the therapeutic strategy of AD based on the latest progress in molecular structures of Aß. The Aß structure at the atomic level has been analyzed, which provides a new and refined perspective to comprehend the role of Aß in AD and to formulate therapeutic strategies of AD.

12.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786622

RESUMO

The loosening and displacement of prostheses after dental implantation and arthroplasty is a substantial medical burden due to the complex correction surgery. Three­dimensional (3D)­printed porous titanium (pTi) alloy scaffolds are characterized by low stiffness, are beneficial to bone ingrowth, and may be used in orthopedic applications. However, for the bio­inert nature between host bone and implants, titanium alloy remains poorly compatible with osseointegration, especially in disease conditions, such as osteoporosis. In the present study, 3D­printed pTi scaffolds with ideal pore size and porosity matching the bone tissue, were combined with pulse electromagnetic fields (PEMF), an exogenous osteogenic induction stimulation, to evaluate osseointegration in osteoporosis. In vitro, external PEMF significantly improved osteoporosis­derived bone marrow mesenchymal stem cell proliferation and osteogenic differentiation on the surface of pTi scaffolds by enhancing the expression of alkaline phosphatase, runt­related transcription factor­2, osteocalcin, and bone morphogenetic protein­2. In vivo, Microcomputed tomography analysis and histological evaluation indicated the external PEMF markedly enhanced bone regeneration and osseointegration. This novel therapeutic strategy has potential to promote osseointegration of dental implants or artificial prostheses for patients with osteoporosis.


Assuntos
Ligas/química , Campos Eletromagnéticos , Osseointegração , Osteoporose/cirurgia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Titânio/química , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Células da Medula Óssea/efeitos da radiação , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/efeitos da radiação , Osteocalcina/metabolismo , Coelhos
15.
Chem Sci ; 12(7): 2433-2440, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34164009

RESUMO

Halogen bonding mediated electrochemical anion sensing has very recently been established as a potent platform for the selective and sensitive detection of anions, although the principles that govern binding and subsequent signal transduction remain poorly understood. Herein we address this challenge by providing a comprehensive study of novel redox-active halogen bonding (XB) and hydrogen bonding (HB) ferrocene-isophthalamide-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs). Under diffusive conditions the sensory performance of the XB sensor was significantly superior. In molecular films the XB and HB binding motifs both display a notably enhanced, but similar, response to specific anions. Importantly, the enhanced response of these films is rationalised by a consideration of the (interfacial) dielectric microenvironment. These effects, and the resolved relationship between anion binding and signal transduction, underpin an improved fundamental understanding of anion sensing at redox-active interfaces which will benefit not just the development of more potent, real-life relevant, sensors but also new tools to study host-guest interactions at interfaces.

16.
Neurol India ; 57(5): 567-77, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19934554

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) is an independent risk factor for both morbidity and mortality in patients with intracerebral hemorrhage and subarchnoid hemorrhage. The pathophysiological mechanisms by which blood within the ventricles causes brain damage are still poorly understood. SETTINGS AND DESIGN: We developed a canine (dog) model with long-term survival. AIMS: To study the mechanisms of pathological changes associated with IVH. MATERIALS AND METHODS: The neurological status, cranial computed tomographic findings, and the pathological changes were studied in the dogs with IVH and also in the control dogs, intraventiricular saline injection. RESULTS: In all the dogs in the control group there were no abnormalities in all the three parameters studied. The dogs in the IVH group developed neurological deficits after the blood injection. There was linear relationship between the ventricular volume and blood clot volume in the first week. After the first week, there was progressive enlargement of the ventricular volume, while the clots continued to shrink. There was complete lysis of the clots within 4 weeks. Pathological studies showed distruction of the ependymal lining of the ventricular system, subependymal gliosis and ischemia of the neurons in the subependymal areas, prominently around the aqueduct. CONCLUSION: Ventricular dilation was the prominent feature following intraventricular injection of the blood. The other pathological features included disruption of ependymal lining, subependymal gliosis, and ischemic necrosis of neurons in the periventricular tissue of the third ventricle, aqueduct, and the fourth ventricle. These pathological may have some role in the ventricular dilatation following IVH.


Assuntos
Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Análise de Variância , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Cães , Feminino , Masculino , Exame Neurológico/métodos , Distribuição Aleatória , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
17.
Sci China Life Sci ; 62(5): 668-680, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820856

RESUMO

Meiotic bouquet formation (known as crescent formation in Tetrahymena thermophila) is indispensable for homologous pairing and recombination, but the regulatory mechanism of bouquet formation remains largely unknown. As a conjugation specific cyclin gene, CYC2 knockout mutants failed to form an elongated crescent structure and aborted meiosis progress in T. thermophila. γ-H2A.X staining revealed fewer micronuclear DNA double-strand breaks (DSBs) in cyc2Δ cells than in wild-type cells. Furthermore, cyc2Δ cells still failed to form a crescent structure even though DSBs were induced by exogenous agents, indicating that a lack of DSBs was not completely responsible for failure to enter the crescent stage. Tubulin staining showed that impaired perinuclear microtubule structure may contribute to the blockage in micronuclear elongation. At the same time, expression of microtubule-associated kinesin genes, KIN11 and KIN141, was significantly downregulated in cyc2Δ cells. Moreover, micronuclear specific accumulation of heterochromatin marker trimethylated H3K23 abnormally increased in the cyc2Δ mutants. Together, these results show that cyclin Cyc2p is required for micronuclear bouquet formation via controlling microtubule-directed nuclear elongation in Tetrahymena.


Assuntos
Ciclinas/metabolismo , Tetrahymena thermophila/metabolismo , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla , Técnicas de Inativação de Genes , Heterocromatina/metabolismo , Meiose/genética , Microtúbulos/metabolismo , Mutação , Tetrahymena thermophila/ultraestrutura
18.
R Soc Open Sci ; 5(3): 171928, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657794

RESUMO

Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.

19.
Oncotarget ; 8(24): 38444-38455, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28404978

RESUMO

We investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups. MTT assay was used to measure cell proliferation. Flow cytometry (FCM) with AnnexinV-FITC/PI double staining and PI staining were employed to analyze cell apoptosis and cell cycle respectively. Scratch test was used to detect cell migration. Western blotting was performed to determine the EGFR/ERK/p38 MAPK signaling pathway-related proteins. Results showed that the positive expression of AQP5 in primary glioblastoma was associated with the tumor size and whether complete excision was performed. The mRNA expressions of AQP5 in cell lines of U87-MG, U251 and LN229 were significantly higher than in U373 and T98G. The proliferation rates of U87-MG, U251 and LN229 cells in the AQP5 siRNA group were lower than in the vector and blank groups. The apoptosis rate increased in the AQP5 siRNA group compared with the vector group. Scratch test demonstrated that AQP5 gene silencing could suppress cell migration. Compared with the vector and blank groups, the AQP5 siRNA group showed decreased expressions of the ERK1/2, p38 MAPK, p-ERK1/2 and p-p38 MAPK proteins. AQP5 gene silencing could inhibit the cell proliferation, reduce cell migration and promote the cell apoptosis of U87-MG, U251 and LN229 by suppressing EGFR/ERK/p38 MAPK signaling pathway.


Assuntos
Aquaporina 5/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Adulto , Idoso , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Receptores ErbB/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glioma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade
20.
Dalton Trans ; 44(9): 4289-96, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25635520

RESUMO

Two bisthienylethenes 2-(2-hydroxyphenyl)-4,5-bis[2,5-dimethyl(3-thienyl)]-1H-imidazole (L1H) and 2-(2-hydroxyphenyl)-4,5-bis(2,5-dimethyl(3-thienyl))-1-phenyl-imidazole (L2H), which have a chelating N,O-donor binding site attached to the photochromic core, have been synthesized using a one-pot condensation reaction, and used to prepare the heteroleptic complexes [Ir(dfppy)2(L1)]·2CH3OH (1) and [Ir(dfppy)2(L2)] (2) [dfppyH = 2-(2,4-difluorophenyl)-pyridine]. In the crystal structures of all four compounds, two thiophene groups of each bisthienylethene molecule adopt parallel conformation. Neighboring molecules in L1H and 1 are linked into supramolecular chains through hydrogen bonds. Particularly, the packing structure of 1 contains right- and left-handed 21 helical chains. In contrast, neighboring molecules in L2H and 2 interact only through van der Waals interactions. At room temperature, L1H and L2H in CH2Cl2 show fluorescence emission at 442 nm and 469 nm, respectively. Compounds 1 and 2 in CH2Cl2 reveal broad emission band characteristics of the Ir(III)/dfppy(-) chromophores at 508 nm and 494 nm, respectively, with a mixing of (3)MLCT and (3)LC characters. At room temperature, the photochromism ability of L2H in CH2Cl2 is clearly weaker than that of L1H. Moreover, no photochromism has been observed in 1 and 2. It has been demonstrated that both the substituent group and {Ir(dfppy)2}(+) coordination could significantly influence the crystal structures, luminescence and photochromic properties of L1H, L2H, 1 and 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA