Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Virol ; 97(11): e0110123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916835

RESUMO

IMPORTANCE: Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.


Assuntos
Proteção Cruzada , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Furões , Influenza Aviária , Vacinas contra Influenza/genética , Vacinas Atenuadas , Infecções por Orthomyxoviridae/prevenção & controle
2.
J Virol ; 96(18): e0103422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040179

RESUMO

The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/virologia , Cricetinae , Fezes/virologia , Genômica , Humanos , Mesocricetus , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Eliminação de Partículas Virais
3.
Emerg Infect Dis ; 27(7): 1979-1981, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152969

RESUMO

We analyzed size of severe acute respiratory coronavirus 2 (SARS-CoV-2) aerosol particles shed by experimentally infected cynomolgus monkeys. Most exhaled particles were small, and virus was mainly released early during infection. By postinfection day 6, no virus was detected in breath, but air in the isolator contained large quantities of aerosolized virus.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Aerossóis , Animais , Humanos , Macaca fascicularis , SARS-CoV-2
4.
Biochem Biophys Res Commun ; 479(4): 901-906, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27641667

RESUMO

MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we found that miR-361-5p is down-regulated in 135 patients with HCV-related hepatocellular carcinoma (HCC). Moreover, the expressions of miR-361-5p were highly correlated with VEGFA in these HCC patients. Further, CCK-8 proliferation assay indicated that miR-361-5p mimics inhibited the cell proliferation of HepG2 and SNU-398 HCC cells. Transwell assay showed that miR-361-5p mimics inhibited the invasion and migration of HepG2 and SNU-398 HCC cells. Luciferase assays revealed that miR-361-5p directly bound to the 3'untranslated region of VEGFA, and western blotting showed that miR-361-5p inhibited the expression of VEGFA. Generally, this study indicated that miR-361-5p is down-regulated in HCC and inhibits proliferation and invasion of HCC cell lines via VEGFA. In future, miR-361-5p will be a potential therapeutic agent for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Feminino , Marcação de Genes , Células Hep G2 , Hepatite C Crônica/complicações , Humanos , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , RNA Mensageiro/genética , RNA Neoplásico/genética
5.
Arch Virol ; 161(4): 867-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26733295

RESUMO

We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China.


Assuntos
Animais Selvagens , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Animais , China/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estudos Soroepidemiológicos
6.
Arch Virol ; 160(5): 1267-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25782865

RESUMO

The worldwide circulation of H9N2 avian influenza virus in poultry, the greater than 2.3 % positive rate for anti-H9 antibodies in poultry-exposed workers, and several reports of human infection indicate that H9N2 virus is a potential threat to human health. Here, we found three mutations that conferred high virulence to H9N2 virus in mice after four passages. The PB2-E627K substitution rapidly appeared at the second passage and played a decisive role in virulence. Polymerase complexes possessing PB2-E627K displayed 16.1-fold higher viral polymerase activity when compared to the wild-type virus, which may account for enhanced virulence of this virus. The other two substitutions (HA-N313D and HA-N496S) enhanced binding to both α2,3-linked and α2,6-linked sialic acid receptors; however, the HA-N313D and N496S substitutions alone decreased the virulence of mouse-adapted virus. Furthermore, this mouse-adapted virus was still not transmissible among guinea pigs by direct contact (0/3 pairs). Our findings show that adaption in mice enhanced the viral polymerase activity and receptor-binding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype in guinea pigs, indicating that host factors play an important role in adaptive evolution of influenza in new hosts.


Assuntos
Adaptação Biológica , Substituição de Aminoácidos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Feminino , Cobaias , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/fisiologia , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/transmissão , RNA Polimerase Dependente de RNA/metabolismo , Inoculações Seriadas , Proteínas Virais/metabolismo , Virulência , Ligação Viral , Replicação Viral
8.
Nat Commun ; 15(1): 1048, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316817

RESUMO

We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.


Assuntos
Infecções por Coronavirus , Coronavirus , Pangolins , Animais , Feminino , Humanos , Camundongos , China , Quirópteros , Citocinas , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Camundongos Transgênicos , Pangolins/virologia
9.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478297

RESUMO

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Transgênicos , Pangolins , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , Pangolins/virologia , Camundongos , Replicação Viral , Pulmão/virologia , Pulmão/patologia , Chlorocebus aethiops , Células Vero
10.
Indian J Orthop ; 57(7): 1153-1157, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37384014

RESUMO

High tibial osteotomy (HTO) is used as an alternative to total knee arthroplasty in young patients with knee osteoarthritis. In the conventional HTO, if the distraction distance is large, the osteotomy section will be significantly separated, forming a large bone defect gap, which may lead to delayed healing or even nonunion. We treated a series of 10 patients with medial knee osteoarthritis by a novel M-shaped high tibial osteotomy. This helped to improve greater contact of cortical sections and rapid healing of the osteotomy break. Over a mean follow-up period of 8.5 months (range, 6.0-12.0 months), all patients achieved bone union. None of the patients showed complications such as nonunion or infection. The novel M-shaped HTO procedure can reduce the probability of delayed union/nonunion and avoid the complications associated with bone grafting. Hence, this technique may be an effective alternative for the HTO.

11.
Eur J Pharmacol ; 938: 175332, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265612

RESUMO

Severe pathological damage caused by the influenza virus is one of the leading causes of death. However, the prevention and control strategies for influenza virus infection have certain limitations, and the exploration for new influenza antiviral drugs has become the major research direction. This study evaluated the antiviral activities of four theaflavin derivatives (TFs). Cytopathic effect (CPE) reduction assay revealed that theaflavin-3'-gallate (TF2b) and theaflavin (TF1) could effectively inhibit the replication of influenza viruses H1N1-UI182, H1N1-PR8, H3N2, and H5N1, and TF2b exhibited the most significant antiviral activity in vivo. Intraperitoneal injection of TF2b at 40 mg/kg/d effectively alleviated viral pneumonia, maintained body weight, and improved the survival rate of mice infected with a lethal dose of H1N1-UI182 to 55.56%. Hematological analysis of peripheral blood further showed that TF2b increased the number of lymphocytes and decreased the number of neutrophils, monocytes, and platelets in the blood of infected mice. RT-qPCR results showed that TF2b reduced the mRNA expression levels of inflammatory cytokines (IL-6, TNF-α, and IL-1ß), chemokines (CXCL-2 and CCL-3), and interferons (IFN-α and IFN-γ) after influenza virus infection. In addition, TF2b significantly down-regulated the expression levels of TLR4, p-p38, p-ERK, and cytokines IL-6, TNF-α, IL-1ß, and IL-10. These results suggest that TF2b not only significantly inhibits viral replication and proliferation in vitro, but also alleviates pneumonia injury in vivo. Its antiviral effect might be attributed to the down-regulation of influenza virus-induced inflammatory cytokines by regulating the TLR4/MAPK/p38 signaling pathway.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Citocinas/metabolismo , Vírus da Influenza A Subtipo H3N2 , Virus da Influenza A Subtipo H5N1/metabolismo , Interleucina-6 , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico
12.
Microbiol Spectr ; 11(1): e0296622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622165

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially identified in 2019, after which it spread rapidly throughout the world. With the progression of the epidemic, new variants of SARS-CoV-2 with faster transmission speeds and higher infectivity have constantly emerged. The proportions of people asymptomatically infected or reinfected after vaccination have increased correspondingly, making the prevention and control of COVID-19 extremely difficult. There is therefore an urgent need for rapid, convenient, and inexpensive detection methods. In this paper, we established a nucleic acid visualization assay targeting the SARS-CoV-2 nucleoprotein (N) gene by combining reverse transcription-recombinase polymerase amplification with closed vertical flow visualization strip (RT-RPA-VF). This method had high sensitivity, comparable to that of reverse transcription-quantitative PCR (RT-qPCR), and the concordance between RT-RPA-VF and RT-qPCR methods was 100%. This detection method is highly specific and is not compatible with bat coronavirus HKU4, human coronaviruses 229E, OC43, and HKU1-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), or other respiratory pathogens. However, multiple SARS-CoV-2 variants are detectable within 25 min at 42°C using this visual method, including RNA transcripts of the Wuhan-Hu-1 strain at levels as low as 1 copy/µL, the Delta strain at 1 copy/µL, and the Omicron strain at 0.77 copies/µL. The RT-RPA-VF method is a simple operation for the rapid diagnosis of COVID-19 that is safe and free from aerosol contamination and could be an affordable and attractive choice for governments seeking to promote their emergency preparedness and better their responses to the continuing COVID-19 epidemic. In addition, this method also has great potential for early monitoring and warning of the epidemic situation at on-site-nursing points. IMPORTANCE The global COVID-19 epidemic, ongoing since the initial outbreak in 2019, has caused panic and huge economic losses worldwide. Due to the continuous emergence of new variants, COVID-19 has been responsible for a higher proportion of asymptomatic patients than the previously identified SARS and MERS, which makes early diagnosis and prevention more difficult. In this manuscript, we describe a rapid, sensitive, and specific detection tool, RT-RPA-VF. This tool provides a new alternative for the detection of SARS-CoV-2 variants in a range as low as 1 to 0.77 copies/µL RNA transcripts. RT-RPA-VF has great potential to ease the pressure of medical diagnosis and the accurate identification of patients with suspected COVID-19 at point-of-care.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Transcrição Reversa , RNA Viral/genética , Recombinases/genética , Sensibilidade e Especificidade
13.
Chin Med ; 18(1): 144, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919750

RESUMO

BACKGROUND: Influenza viruses, especially Influenza A virus and Influenza B virus, are respiratory pathogens and can cause seasonal epidemics and pandemics. Severe influenza viruses infection induces strong host-defense response and excessive inflammatory response, resulting in acute lung damage, multiple organ failure and high mortality. Isoquercitrin is a Chinese medicine monomer, which was reported to have multiple biological activities, including antiviral activity against HSV, IAV, SARS-CoV-2 and so on. Aims of this study were to assess the in vitro anti-IAV and anti-IBV activity, evaluate the in vivo protective efficacy against lethal infection of the influenza virus and searched for the more optimal method of drug administration of isoquercitrin. METHODS: In vitro infection model (MDCK and A549 cells) and mouse lethal infection model of Influenza A virus and Influenza B virus were used to evaluate the antiviral activity of isoquercitrin. RESULTS: Isoquercitrin could significantly suppress the replication in vitro and in vivo and reduced the mortality of mouse lethal infection models. Compared with virus infection group, isoquercitrin mitigated lung and multiple organ damage. Moreover, isoquercitrin blocked hyperproduction of cytokines induced by virus infection via inactivating NF-κB signaling. Among these routes of isoquercitrin administration, intramuscular injection is a better drug delivery method. CONCLUSION: Isoquercitrin is a potential Chinese medicine monomer Against Influenza A Virus and Influenza B Virus infection.

14.
FEBS Open Bio ; 13(10): 1831-1843, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544014

RESUMO

Influenza virus is prone to seasonal spread and widespread outbreaks, which pose important challenges to public health security. Therefore, it is important to effectively prevent and treat influenza virus infection. Schisandra polysaccharide (SPJ) is a polysaccharide derived from the fruit of Schisandra chinensis (Turcz.) Baill. In this study, we evaluated the antiviral activity of SPJ in vitro and in vivo, especially against influenza A virus (IAV) infection. By analyzing SPJ structure and monosaccharide composition, the molecular weight of SPJ was determined to be 115.5 KD, and it is composed of galacturonic acid (89.4%), rhamnose (0.8%), galactose (4.4%), arabinose (3.8%), and glucose (1.7%). Immunofluorescence analysis showed that SPJ treatment reduced the positive rate of viral nucleoproteins in cells, indicating that the compound had an inhibitory effect on influenza virus replication. Furthermore, SPJ therapy improved the survival of infected mice. Lung virus titer assays indicated that SPJ treatment significantly reduced viral loading in the lung tissue of infected mice and alleviated the pathological damage caused by influenza virus infection. Moreover, SPJ reduced cytokine expression during influenza virus challenge. In conclusion, SPJ has anti-influenza virus effects and may have potential as an anti-influenza drug candidate in further clinical studies.

15.
Viruses ; 15(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37515233

RESUMO

The H6 subtype of avian influenza virus (H6 AIV) is the most detected AIV subtype in poultry and wild birds. It causes economic losses to the poultry industry, and the most important, H6 AIV may have the ability to infect mammals, which is a great threat to public health security. In addition, the H6 subtype can serve as a precursor to providing internal genes for other highly pathogenic AIVs, posing a potential threat. H6 AIV currently face to the high positive detection rate and harmless nature of H6 AIV and because not highly effective H6 subtype vaccine available on the market. In this study, we focused on the prevalence of H6 AIV in poultry and wild birds, phylogenetic analysis, genetic variation characteristics, selection analysis, and prevention and control to provide relevant references for the scientific prevention and control of H6 AIV in future.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Filogenia , Vírus da Influenza A/genética , Aves , Aves Domésticas , Animais Selvagens , Mamíferos
16.
Emerg Microbes Infect ; 12(1): e2184177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36877121

RESUMO

Wild aquatic birds are the primary hosts of H13 avian influenza viruses (AIVs). Herein, we performed a genetic analysis of two H13 AIVs isolated from wild birds in China and evaluated their infection potential in poultry to further explore the potential for transmission from wild aquatic birds to poultry. Our results showed that the two strains belong to different groups, one strain (A/mallard/Dalian/DZ-137/2013; abbreviated as DZ137) belongs to Group I, whereas the other strain (A/Eurasian Curlew/Liaoning/ZH-385/2014; abbreviated as ZH385) belongs to Group III. In vitro experiments showed that both DZ137 and ZH385 can replicate efficiently in chicken embryo fibroblast cells. We found that these H13 AIVs can also efficiently replicate in mammalian cell lines, including human embryonic kidney cells and Madin-Darby canine kidney cells. In vivo experiments showed that DZ137 and ZH385 can infect 1-day-old specific pathogen-free (SPF) chickens, and that ZH385 has a higher replication ability in chickens than DZ137. Notably, only ZH385 can replicate efficiently in 10-day-old SPF chickens. However, neither DZ137 nor ZH385 can replicate well in turkeys and quails. Both DZ137 and ZH385 can replicate in 3-week-old mice. Serological surveillance of poultry showed a 4.6%-10.4% (15/328-34/328) antibody-positive rate against H13 AIVs in farm chickens. Our findings indicate that H13 AIVs have the replication ability in chickens and mice and may have a risk of crossing the host barrier from wild aquatic birds to poultry or mammals in the future.


Assuntos
Vírus da Influenza A , Influenza Aviária , Embrião de Galinha , Animais , Cães , Camundongos , Humanos , Aves Domésticas , Galinhas , Animais Selvagens , Mamíferos , Filogenia
17.
Virol Sin ; 38(1): 119-127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36450323

RESUMO

Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 â€‹µg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Camundongos , NF-kappa B/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A/fisiologia , Transdução de Sinais , Taurina/farmacologia , Taurina/uso terapêutico , Camundongos Endogâmicos BALB C , Replicação Viral
18.
Microorganisms ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677299

RESUMO

This study aimed to evaluate antimicrobial resistance, virulence, and the genetic diversity of Aeromonas isolated from migratory birds from Guangxi Province, Guangdong Province, Ningxia Hui Autonomous Region, Jiangxi Province, and Inner Mongolia in China. A total of 810 samples were collected, including fresh feces, cloacal swabs, and throat swabs. The collected samples were processed and subjected to bacteriological examination. The resistance to 21 antibiotics was evaluated. A phylogenetic tree was constructed using concatenated gltA-groL-gyrB-metG-PPSA-recA sequences. Eight putative virulence factors were identified by PCR and sequencing, and a biofilm formation assay was performed using a modified microtiter plate method. In total, 176 Aeromonas isolates were isolated including A. sobria, A. hydrophila, A. veronii, and A. caviae. All isolates showed variable resistance against all 16 tested antibiotic discs, and only one antibiotic had no reference standard. Six kinds of virulence gene markers were discovered, and the detection rates were 46.0% (hlyA), 76.1% (aerA), 52.3% (alt), 4.5% (ast), 54.0% (fla), and 64.2% (lip). These strains were able to form biofilms with distinct magnitudes; 102 were weakly adherent, 14 were moderately adherent, 60 were non-adherent, and none were strongly adherent. Our results suggest that migratory birds carry highly virulent and multidrug-resistant Aeromonas and spread them around the world through migration, which is a potential threat to public health.

19.
Front Immunol ; 13: 869809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572504

RESUMO

Previous studies have shown that B.1.351 and other variants have extended the host range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to mice. Sustained transmission is a prerequisite for viral maintenance in a population. However, no evidence of natural transmission of SARS-CoV-2 in wild mice has been documented to date. Here, we evaluated the replication and contact transmission of the B.1.351 variant in mice and rats. The B.1.351 variant could infect and replicate efficiently in the airways of mice and rats. Furthermore, the B.1.351 variant could not be transmitted in BALB/c or C57BL/6 mice but could be transmitted with moderate efficiency in rats by direct contact. Additionally, the B.1.351 variant did not transmit from inoculated Syrian hamsters to BALB/c mice. Moreover, the mouse-adapted SARS-CoV-2 strain C57MA14 did not transmit in mice. In summary, the risk of B.1.351 variant transmission in mice is extremely low, but the transmission risk in rats should not be neglected. We should pay more attention to the potential natural transmission of SARS-CoV-2 variants in rats and their possible spillback to humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos
20.
Front Microbiol ; 13: 932698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903482

RESUMO

SARS-CoV-2 is a novel coronavirus that has caused a global pandemic. To date, 504,907,616 people have been infected and developed coronavirus disease 2019 (COVID-19). A rapid and simple diagnostic method is needed to control this pandemic. In this study, a visual nucleic acid detection method combining reverse transcription loop-mediated isothermal amplification and a vertical flow visualization strip (RT-LAMP-VF) was successfully established and could detect 20 copies/µl of SARS-CoV-2 RNA transcript within 50 min at 61°C. This assay had no cross-reactivity with a variety of coronaviruses, including human coronavirus OC43, 229E, HKU1, NL63, severe acute respiratory syndrome-related coronavirus (SARSr-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and bat coronavirus HKU4, exhibiting very high levels of diagnostic sensitivity and specificity. Most strikingly, this method can be used for detecting multiple SARS-CoV-2 variants, including the Wuhan-Hu-1 strain, Delta, and Omicron variants. Compared with the RT-qPCR method recommended by the World Health Organization (WHO), RT-LAMP-VF does not require special equipment and is easy to perform. As a result, it is more suitable for rapid screening of suspected SARS-CoV-2 samples in the field and local laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA