Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Appl Environ Microbiol ; : e0060924, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109876

RESUMO

Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (107 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium, were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.

2.
Curr Microbiol ; 81(9): 273, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017960

RESUMO

In pharmaceutical manufacturing, ensuring product safety involves the detection and identification of microorganisms with human pathogenic potential, including Burkholderia cepacia complex (BCC), Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Clostridium sporogenes, Candida albicans, and Mycoplasma spp., some of which may be missed or not identified by traditional culture-dependent methods. In this study, we employed a metagenomic approach to detect these taxa, avoiding the limitations of conventional cultivation methods. We assessed the groundwater microbiome's taxonomic and functional features from samples collected at two locations in the spring and summer. All datasets comprised 436-557 genera with Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Cyanobacteria accounting for > 95% of microbial DNA sequences. The aforementioned species constituted less than 18.3% of relative abundance. Escherichia and Salmonella were mainly detected in Hot Springs, relative to Jefferson, while Clostridium and Pseudomonas were mainly found in Jefferson relative to Hot Springs. Multidrug resistance efflux pumps and BlaR1 family regulatory sensor-transducer disambiguation dominated in Hot Springs and in Jefferson. These initial results provide insight into the detection of specified microorganisms and could constitute a framework for the establishment of comprehensive metagenomic analysis for the microbiological evaluation of pharmaceutical-grade water and other non-sterile pharmaceutical products, ensuring public safety.


Assuntos
Bactérias , Água Subterrânea , Metagenômica , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Água Subterrânea/microbiologia , Microbiota/genética , Preparações Farmacêuticas , Metagenoma , Microbiologia da Água
3.
Antimicrob Agents Chemother ; 67(1): e0135222, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36507667

RESUMO

Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic human pathogens that are inherently multidrug resistant, limiting treatment options for infections. Here, a novel diazabicyclooctane, ETX0462, was evaluated for activity against Bcc and B. gladioli. Ninety-eight percent of the isolates examined in this study were susceptible. ETX0462 was found to demonstrate in vitro activity superior to that of currently available treatment options (e.g., trimethoprim-sulfamethoxazole and ceftazidime).


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Infecções por Burkholderia/tratamento farmacológico
4.
Antimicrob Agents Chemother ; 67(11): e0049823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37768313

RESUMO

The novel clinical-stage ß-lactam-ß-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D ß-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.


Assuntos
Complexo Burkholderia cepacia , Burkholderia gladioli , Fibrose Cística , Humanos , Estados Unidos , Cefepima/farmacologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases , Testes de Sensibilidade Microbiana
5.
Transpl Infect Dis ; 25(2): e14041, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36864824

RESUMO

BACKGROUND: There is increased interest in bacteriophage (phage) therapy to treat infections caused by antibiotic-resistant bacteria. A lung transplant recipient with cystic fibrosis and Burkholderia multivorans infection was treated with inhaled phage therapy for 7 days before she died. METHODS: Phages were given via nebulization through the mechanical ventilation circuit. Remnant respiratory specimens and serum were collected. We quantified phage and bacterial deoxyribonucleic acid (DNA) using quantitative polymerase chain reaction, and tested phage neutralization in the presence of patient serum. We performed whole genome sequencing and antibiotic and phage susceptibility testing on 15 B. multivorans isolates. Finally, we extracted lipopolysaccharide (LPS) from two isolates and visualized their LPS using gel electrophoresis. RESULTS: Phage therapy was temporally followed by a temporary improvement in leukocytosis and hemodynamics, followed by worsening leukocytosis on day 5, deterioration on day 7, and death on day 8. We detected phage DNA in respiratory samples after 6 days of nebulized phage therapy. Bacterial DNA in respiratory samples decreased over time, and no serum neutralization was detected. Isolates collected between 2001 and 2020 were closely related but differed in their antibiotic and phage susceptibility profiles. Early isolates were not susceptible to the phage used for therapy, while later isolates, including two isolates collected during phage therapy, were susceptible. Susceptibility to the phage used for therapy was correlated with differences in O-antigen profiles of an early versus a late isolate. CONCLUSIONS: This case of clinical failure of nebulized phage therapy highlights the limitations, unknowns, and challenges of phage therapy for resistant infections.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Fibrose Cística , Terapia por Fagos , Feminino , Humanos , Antibacterianos/uso terapêutico , Infecções por Burkholderia/tratamento farmacológico , Fibrose Cística/microbiologia , DNA/uso terapêutico , Leucocitose/tratamento farmacológico , Lipopolissacarídeos/uso terapêutico , Pulmão/microbiologia , Transplantados , Evolução Fatal , Adulto
6.
MMWR Morb Mortal Wkly Rep ; 71(48): 1517-1521, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454695

RESUMO

In July 2021, the Virginia Department of Health notified CDC of a cluster of eight invasive infections with Burkholderia stabilis, a bacterium in the Burkholderia cepacia complex (BCC), among hospitalized patients at hospital A. Most patients had undergone ultrasound-guided procedures during their admission. Culture of MediChoice M500812 nonsterile ultrasound gel used in hospital A revealed contamination of unopened product with B. stabilis that matched the whole genome sequencing (WGS) of B. stabilis strains found among patients. CDC and hospital A, in collaboration with partner health care facilities, state and local health departments, and the Food and Drug Administration (FDA), identified 119 B. stabilis infections in 10 U.S. states, leading to the national recall of all ultrasound gel products produced by Eco-Med Pharmaceutical (Eco-Med), the manufacturer of MediChoice M500812. Additional investigation of health care facility practices revealed frequent use of nonsterile ultrasound gel to assist with visualization in preparation for or during invasive, percutaneous procedures (e.g., intravenous catheter insertion). This practice could have allowed introduction of contaminated ultrasound gel into sterile body sites when gel and associated viable bacteria were not completely removed from skin, leading to invasive infections. This outbreak highlights the importance of appropriate use of ultrasound gel within health care settings to help prevent patient infections, including the use of only sterile, single-use ultrasound gel for ultrasonography when subsequent percutaneous procedures might be performed.


Assuntos
Infecções por Burkholderia , Surtos de Doenças , Contaminação de Equipamentos , Instalações de Saúde , Humanos , Contaminação de Medicamentos , Ultrassonografia , Estados Unidos/epidemiologia , Géis , Infecções por Burkholderia/epidemiologia , Infecções por Burkholderia/etiologia
7.
Antimicrob Agents Chemother ; 65(11): e0133221, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370574

RESUMO

The Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic pathogens that most commonly infect persons with cystic fibrosis or compromised immune systems. Members of the Burkholderia genus are intrinsically multidrug resistant (MDR), possessing both a PenA carbapenemase and an AmpC ß-lactamase, rendering treatment of infections due to these species problematic. Here, we tested the ß-lactam-ß-lactamase inhibitor combination imipenem-relebactam against a panel of MDR Bcc and B. gladioli strains. The addition of relebactam to imipenem dramatically lowered the MICs for Bcc and B. gladioli: only 16% of isolates tested susceptible to imipenem, while 71.3% were susceptible to the imipenem-relebactam combination. While ceftazidime-avibactam remained the most potent combination drug against this panel of Bcc and B. gladioli strains, imipenem-relebactam was active against 71.4% of the ceftazidime-avibactam-resistant isolates. Relebactam demonstrated potent inactivation of Burkholderia multivorans PenA1, with an apparent Ki (Kiapp) value of 3.2 µM. Timed mass spectrometry revealed that PenA1 formed a very stable adduct with relebactam, without any detectable desulfation for as long as 24 h. Based on our results, imipenem-relebactam may represent an alternative salvage therapy for Bcc and B. gladioli infections, especially in cases where the isolates are resistant to ceftazidime-avibactam.


Assuntos
Complexo Burkholderia cepacia , Burkholderia gladioli , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Burkholderia , Complexo Burkholderia cepacia/efeitos dos fármacos , Burkholderia gladioli/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases
8.
Artigo em Inglês | MEDLINE | ID: mdl-33318017

RESUMO

The Gram-negative bacterial genus Burkholderia includes several hard-to-treat human pathogens: two biothreat species, Burkholderia mallei (causing glanders) and B. pseudomallei (causing melioidosis), and the B. cepacia complex (BCC) and B. gladioli, which cause chronic lung infections in persons with cystic fibrosis. All Burkholderia spp. possess an Ambler class A Pen ß-lactamase, which confers resistance to ß-lactams. The ß-lactam-ß-lactamase inhibitor combination sulbactam-durlobactam (SUL-DUR) is in clinical development for the treatment of Acinetobacter infections. In this study, we evaluated SUL-DUR for in vitro and in vivo activity against Burkholderia clinical isolates. We measured MICs of SUL-DUR against BCC and B. gladioli (n = 150), B. mallei (n = 30), and B. pseudomallei (n = 28), studied the kinetics of inhibition of the PenA1 ß-lactamase from B. multivorans and the PenI ß-lactamase from B. pseudomallei by durlobactam, tested for blaPenA1 induction by SUL-DUR, and evaluated in vivo efficacy in a mouse model of melioidosis. SUL-DUR inhibited growth of 87.3% of the BCC and B. gladioli strains and 100% of the B. mallei and B. pseudomallei strains at 4/4 µg/ml. Durlobactam potently inhibited PenA1 and PenI with second-order rate constant for inactivation (k2/K) values of 3.9 × 106 M-1 s-1 and 2.6 × 103 M-1 s-1 and apparent Ki (Kiapp) of 15 nM and 241 nM, respectively, by forming highly stable covalent complexes. Neither sulbactam, durlobactam, nor SUL-DUR increased production of PenA1. SUL-DUR demonstrated activity in vivo in a murine melioidosis model. Taken together, these data suggest that SUL-DUR may be useful as a treatment for Burkholderia infections.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Burkholderia , Mormo , Melioidose , Animais , Antibacterianos/farmacologia , Mormo/tratamento farmacológico , Cavalos , Melioidose/tratamento farmacológico , Camundongos , Sulbactam/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33139284

RESUMO

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Assuntos
Fibrose Cística , Antibacterianos/uso terapêutico , Cromatografia Líquida , Fibrose Cística/tratamento farmacológico , Humanos , Espectrometria de Massas , Escarro
10.
J Clin Microbiol ; 59(12): e0144721, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34524889

RESUMO

The Burkholderia cepacia complex (BCC) is known for causing serious lung infections in people with cystic fibrosis (CF). These infections can require lung transplantation, eligibility for which may be guided by antimicrobial susceptibility testing (AST). While the Clinical and Laboratory Standards Institute recommends AST for BCC, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) does not, due to poor method performance and correlation with clinical outcomes. Furthermore, limited data exist on the performance of automated AST methods for BCC. To address these issues, reproducibility and accuracy were evaluated for disk diffusion (DD), broth microdilution (BMD), and MicroScan WalkAway using 50 B. cenocepacia and 50 B. multivorans isolates collected from people with CF. The following drugs were evaluated in triplicate: chloramphenicol (CAM), ceftazidime (CAZ), meropenem (MEM), trimethoprim-sulfamethoxazole (TMP-SMX), minocycline (MIN), levofloxacin (LVX), ciprofloxacin (CIP), and piperacillin-tazobactam (PIP-TAZ). BMD reproducibility was ≥ 95% for MEM and MIN only, and MicroScan WalkAway reproducibility was similar to BMD. DD reproducibility was < 90% for all drugs tested when a 3 mm cut-off was applied. When comparing the accuracy of DD to BMD, only MEM met all acceptance criteria. TMP-SMX and LVX had high minor errors, CAZ had unacceptable very major errors (VME), and MIN, PIP-TAZ, and CIP had both unacceptable minor errors and VMEs. For MicroScan WalkAway, no drugs met acceptance criteria. Analyses also showed that errors were not attributed to one species. In general, our data agree with EUCAST recommendations.


Assuntos
Infecções por Burkholderia , Burkholderia cenocepacia , Complexo Burkholderia cepacia , Fibrose Cística , Antibacterianos/farmacologia , Burkholderia , Fibrose Cística/complicações , Humanos , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
11.
Thorax ; 75(1): 88-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732688

RESUMO

This report describes transmission of a Burkholderia cenocepacia ET12 strain (ET12-Bc) at the Toronto Adult Cystic Fibrosis (CF) Centre occurring from 2008 to 2017. Epidemiological and genomic data from 11 patients with CF were evaluated. Isolates were analysed using whole genome sequencing (WGS). Epidemiological investigation and WGS analysis suggested nosocomial transmission, despite enhanced infection control precautions. This was associated with subsequent deaths in 10 patients. ET12-Bc positive patients are no longer cared for on the same unit as ET12-Bc negative patients.


Assuntos
Infecções por Burkholderia/transmissão , Burkholderia cenocepacia/isolamento & purificação , Fibrose Cística , Adulto , Técnicas de Tipagem Bacteriana , Infecções por Burkholderia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Humanos , Ontário/epidemiologia
12.
Thorax ; 75(9): 780-790, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631930

RESUMO

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Assuntos
Antibacterianos/farmacologia , Bactérias , Fibrose Cística/microbiologia , Microbiota/efeitos dos fármacos , Escarro/microbiologia , Tobramicina/farmacologia , Administração por Inalação , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/prevenção & controle , Criança , Fibrose Cística/fisiopatologia , Volume Expiratório Forçado , Humanos , Quimioterapia de Manutenção , Metagenoma/efeitos dos fármacos , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo , Tobramicina/uso terapêutico , Adulto Jovem
13.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32878952

RESUMO

Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia cepacia , Burkholderia , Infecções por Burkholderia/diagnóstico , Complexo Burkholderia cepacia/genética , Cromatografia Líquida , Humanos , Filogenia , Proteômica , Espectrometria de Massas em Tandem
14.
J Ind Microbiol Biotechnol ; 47(6-7): 475-484, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32671501

RESUMO

The presence of Burkholderia cepacia complex (BCC) strains has resulted in recalls of pharmaceutical products, since these opportunistic pathogens can cause serious infections. Rapid and sensitive diagnostic methods to detect BCC are crucial to determine contamination levels. We evaluated bacterial cultures, real-time PCR (qPCR), droplet digital PCR (ddPCR), and flow cytometry to detect BCC in nuclease-free water, in chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions. Twenty BCC strains were each suspended (1, 10, 100, and 1000 CFU/ml) in autoclaved nuclease-free water, 10 µg/ml CHX, and 50 µg/ml BZK. Five replicates of each strain were tested at each concentration (20 strains × 4 concentrations × 5 replicates = 400 tests) to detect BCC using the aforementioned four methods. We demonstrated the potential of ddPCR and flow cytometry as more sensitive alternatives to culture-based methods to detect BCC in autoclaved nuclease-free water and antiseptics samples.


Assuntos
Anti-Infecciosos Locais/farmacologia , Complexo Burkholderia cepacia , Contaminação de Medicamentos , Citometria de Fluxo , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real , Compostos de Benzalcônio , Biotecnologia , Clorexidina/análogos & derivados , Cultura , Água
15.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109991

RESUMO

Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCEStenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.


Assuntos
Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Escarro/microbiologia , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacologia , Genoma Bacteriano , Humanos , Filogenia , Especificidade da Espécie , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/metabolismo
16.
Clin Infect Dis ; 69(10): 1812-1816, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056660

RESUMO

Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Doença Crônica/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Escarro/microbiologia
17.
BMC Genomics ; 20(1): 630, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375067

RESUMO

BACKGROUND: Herbaspirillum seropedicae is an environmental ß-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. RESULTS: Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. CONCLUSIONS: Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Genômica , Herbaspirillum/genética , Herbaspirillum/fisiologia , Interações Hospedeiro-Patógeno/genética , Evolução Molecular , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Herbaspirillum/metabolismo , Humanos , Lipopolissacarídeos/biossíntese , Filogenia , Sideróforos/biossíntese , Especificidade da Espécie
18.
Am J Transplant ; 19(3): 933-938, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30091842

RESUMO

"Cepacia syndrome", caused by Burkholderia cepacia complex and often associated with cystic fibrosis, carries a high mortality rate. It is rare for Burkholderia multivorans, a species within the B. cepacia complex, to cause cepacia syndrome even among patients with cystic fibrosis. This is the first reported fatal case of cepacia syndrome caused by B. multivorans occurring in a pediatric liver transplant recipient who does not have cystic fibrosis. We describe the unique characteristics of this pathogen among the non-cystic fibrosis population and the importance of early recognition and treatment.


Assuntos
Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/patogenicidade , Febre de Causa Desconhecida/cirurgia , Transplante de Fígado/efeitos adversos , Sepse/etiologia , Infecções por Burkholderia/complicações , Evolução Fatal , Febre de Causa Desconhecida/patologia , Humanos , Lactente , Masculino , Sepse/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30910901

RESUMO

Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 µg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Glucosamina/farmacologia , Infecções por Burkholderia/microbiologia , Fibrose Cística/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-31611364

RESUMO

We tested the in vitro activities of ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, piperacillin-tazobactam, and 11 other antimicrobial agents against 420 Burkholderia, Achromobacter, Stenotrophomonas, and Pandoraea strains, 89% of which were cultured from respiratory specimens from persons with cystic fibrosis. Among the ß-lactam-ß-lactamase inhibitor agents, meropenem-vaborbactam had the greatest activity against Burkholderia and Achromobacter, including multidrug-resistant and extensively-drug-resistant strains. None of the newer ß-lactam-ß-lactamase combination drugs showed increased activity compared to that of the older agents against Stenotrophomonas maltophilia or Pandoraea spp.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Inibidores de beta-Lactamases/farmacologia , Achromobacter/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Burkholderia/efeitos dos fármacos , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Piperacilina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos , Tazobactam/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA