RESUMO
Electrocaloric1,2 and electrostrictive3,4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration5. Despite a handful of numerical models and schematic presentations6,7, current electrocaloric refrigerators still rely on external accessories to drive the working bodies8-10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g-1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.
Assuntos
Polímeros , Refrigeração , Termodinâmica , Refrigeração/instrumentação , Polímeros/química , Temperatura Baixa , Eletricidade , Desenho de Equipamento , Estimulação Elétrica , TemperaturaRESUMO
Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.
Assuntos
Atmosfera , Metano , Áreas Alagadas , Humanos , Controle de Doenças Transmissíveis/estatística & dados numéricos , COVID-19/epidemiologia , Metano/análise , Ozônio/análise , Atmosfera/química , Atividades Humanas/estatística & dados numéricos , Fatores de Tempo , História do Século XXI , Temperatura , Umidade , Óxidos de Nitrogênio/análiseRESUMO
Cell-type annotation is a critical step in single-cell data analysis. With the development of numerous cell annotation methods, it is necessary to evaluate these methods to help researchers use them effectively. Reference datasets are essential for evaluation, but currently, the cell labels of reference datasets mainly come from computational methods, which may have computational biases and may not reflect the actual cell-type outcomes. This study first constructed an experimentally labeled immune cell-subtype single-cell dataset of the same batch and systematically evaluated 18 cell annotation methods. We assessed those methods under five scenarios, including intra-dataset validation, immune cell-subtype validation, unsupervised clustering, inter-dataset annotation, and unknown cell-type prediction. Accuracy and ARI were evaluation metrics. The results showed that SVM, scBERT, and scDeepSort were the best-performing supervised methods. Seurat was the best-performing unsupervised clustering method, but it couldn't fully fit the actual cell-type distribution. Our results indicated that experimentally labeled immune cell-subtype datasets revealed the deficiencies of unsupervised clustering methods and provided new dataset support for supervised methods.
Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Análise por Conglomerados , Biologia Computacional/métodos , Anotação de Sequência Molecular , RNA-Seq/métodos , Análise da Expressão Gênica de Célula ÚnicaRESUMO
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Assuntos
RNA , RNA/uso terapêutico , RNA Interferente Pequeno/química , Estudos Prospectivos , Interferência de RNARESUMO
Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.
RESUMO
Using hydrogen as a fuel is an effective way to combat energy crisis and at the same time reduce greenhouse gas emission. Alkaline hydrogen evolution reaction (HER) is one important way to obtain green hydrogen, which however is energy intensive and is difficult to obtain high efficiencies even when using state-of-the-art noble metal catalysts. Here, we report a three-component catalytic system using only non-noble elements, consisting of cobalt oxide clusters and single molybdenum atoms supported on oxyanion-terminated two-dimensional MXene, which enabled the unusual generation of hydrogen by a kinetically fast Volmer-Tafel process in an alkaline electrolyte. The key feature of this catalyst is that the three components are connected by bridging oxygen, which serves to immediately adsorb H* produced during water dissociation on cobalt oxide and relay it to the molybdenum single-atom catalyst. On the Mo atom, due to this unique coordination environment, the relayed H* intermediates directly combine and desorb, realizing H2 generation through an unusual Tafel pathway. The presence of bridging oxygen increases the acidity of the catalyst as Brønsted acid with the reversible adsorption and donation of a proton, thus eliminating the need for acid addition and ensuring excellent and sustainable alkaline HER performance. The performance of our catalyst is comparable to that of the commercial noble metal catalyst PtRu/C. Our work makes a significant contribution to designing efficient non-noble catalysts for alkaline HER electrocatalysis.
RESUMO
Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.
Assuntos
Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Puccinia/fisiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteína Tumoral 1 Controlada por TraduçãoRESUMO
The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.
Assuntos
Bovinos , Metilação de DNA , Cabras , Ovinos , Animais , Bovinos/genética , Cães , Humanos , Masculino , Camundongos , Estudo de Associação Genômica Ampla , Cabras/genética , Herança Multifatorial , Ovinos/genética , SuínosRESUMO
Emerging and re-emerging viral pandemics have emerged as a major public health concern. Highly pathogenic coronaviruses, which cause severe respiratory disease, threaten human health and socioeconomic development. Great efforts are being devoted to the development of safe and efficacious therapeutic agents and preventive vaccines to combat them. Nevertheless, the highly mutated virus poses a challenge to drug development and vaccine efficacy, and the use of common immunomodulatory agents lacks specificity. Benefiting from the burgeoning intersection of biological engineering and biotechnology, membrane-derived vesicles have shown superior potential as therapeutics due to their biocompatibility, design flexibility, remarkable bionics, and inherent interaction with phagocytes. The interactions between membrane-derived vesicles, viruses, and the immune system have emerged as a new and promising topic. This review provides insight into considerations for developing innovative antiviral strategies and vaccines against SARS-CoV-2. First, membrane-derived vesicles may provide potential biomimetic decoys with a high affinity for viruses to block virus-receptor interactions for early interruption of infection. Second, membrane-derived vesicles could help achieve a balanced interplay between the virus and the host's innate immunity. Finally, membrane-derived vesicles have revealed numerous possibilities for their employment as vaccines.
RESUMO
This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 µM, with a limit of detection of 0.084 µM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.
Assuntos
Nanopartículas Metálicas , Smartphone , Humanos , Creatinina , Ouro , Urinálise , Colorimetria/métodosRESUMO
Recent advances in epitranscriptomics have unveiled functional associations between RNA modifications (RMs) and multiple human diseases, but distinguishing the functional or disease-related single nucleotide variants (SNVs) from the majority of 'silent' variants remains a major challenge. We previously developed the RMDisease database for unveiling the association between genetic variants and RMs concerning human disease pathogenesis. In this work, we present RMDisease v2.0, an updated database with expanded coverage. Using deep learning models and from 873 819 experimentally validated RM sites, we identified a total of 1 366 252 RM-associated variants that may affect (add or remove an RM site) 16 different types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G, A-to-I, ac4C, Am, Cm, Um, Gm, hm5C, D and f5C) in 20 organisms (human, mouse, rat, zebrafish, maize, fruit fly, yeast, fission yeast, Arabidopsis, rice, chicken, goat, sheep, pig, cow, rhesus monkey, tomato, chimpanzee, green monkey and SARS-CoV-2). Among them, 14 749 disease- and 2441 trait-associated genetic variants may function via the perturbation of epitranscriptomic markers. RMDisease v2.0 should serve as a useful resource for studying the genetic drivers of phenotypes that lie within the epitranscriptome layer circuitry, and is freely accessible at: www.rnamd.org/rmdisease2.
Assuntos
Bases de Dados Factuais , Processamento Pós-Transcricional do RNA , Animais , Humanos , Fenótipo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , EpigenômicaRESUMO
Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.
Assuntos
Oryza , Infertilidade das Plantas , Hibridização Genética , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.
Assuntos
Fluxo Gênico , Genômica , Aves Canoras , Filogenia , Genômica/métodos , GenomaRESUMO
Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.
Assuntos
Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Catepsina B , Terapia por Ultrassom/métodos , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Nanopartículas/químicaRESUMO
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in â¼5.9- and â¼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Glucose Oxidase/química , DNA/químicaRESUMO
Ferredoxin reductase (FDXR), a target of p53, modulates p53-dependent apoptosis and is necessary for steroidogenesis and biogenesis of iron-sulfur clusters. To determine the biological function of FDXR, we generated a Fdxr-deficient mouse model and found that loss of Fdxr led to embryonic lethality potentially due to iron overload in developing embryos. Interestingly, mice heterozygous in Fdxr had a short life span and were prone to spontaneous tumors and liver abnormalities, including steatosis, hepatitis, and hepatocellular carcinoma. We also found that FDXR was necessary for mitochondrial iron homeostasis and proper expression of several master regulators of iron metabolism, including iron regulatory protein 2 (IRP2). Surprisingly, we found that p53 mRNA translation was suppressed by FDXR deficiency via IRP2. Moreover, we found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR. Finally, we found that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism. Together, we conclude that FDXR and p53 are mutually regulated and that the FDXR-p53 loop is critical for tumor suppression via iron homeostasis.
Assuntos
Ferredoxina-NADP Redutase/metabolismo , Homeostase/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Ferredoxina-NADP Redutase/genética , Regulação da Expressão Gênica/genética , Células HCT116 , Células Hep G2 , Humanos , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Hepatopatias/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Biossíntese de Proteínas , Proteína Supressora de Tumor p53/genéticaRESUMO
BTB and CNC homology 1 (BACH1) plays a crucial role in the pathogenesis of acute lung injury (ALI) caused by gram-negative bacteria. However, its exact mechanisms and roles in Staphylococcus aureus (SA)-induced ALI, a gram-positive bacterial infection, remain incompletely understood. In this study, we generated a BACH1-knockout mouse model (BACH1-/-) to investigate the role of BACH1 and its underlying mechanisms in regulating the development of sepsis-induced acute lung injury (ALI). Elevated levels of BACH1 were observed in both serum samples from septic patients and mouse models. Deletion of BACH1 alleviated ALI symptoms induced by sepsis. In bone marrow-derived macrophages, BACH1 deletion or knockdown suppressed NF-κB p65 phosphorylation and the induction of pro-inflammatory cytokines. Mechanistic studies demonstrated that BACH1 downregulated tumor necrosis factor-alpha-induced protein 3 (TNFAIP3) mRNA expression by binding to its promoter region. These findings uncover inhibiting BACH1 may be a promising therapeutic strategy for treating gram-positive bacteria-induced ALI.
RESUMO
Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.
Assuntos
DNA Glicosilases , Cardiomiopatias Diabéticas , Resistência à Insulina , Animais , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/deficiência , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Camundongos , Masculino , PPAR gama/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Glicólise , Humanos , Camundongos Endogâmicos C57BLRESUMO
In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.
Assuntos
Cuidados Críticos , Metabolômica , Humanos , Metabolômica/métodos , Pneumopatias/metabolismo , Pneumologia/métodos , Medicina de Precisão/métodosRESUMO
To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.