Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
PLoS Biol ; 13(7): e1002194, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26158621

RESUMO

Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Dronabinol/efeitos adversos , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Amnésia/induzido quimicamente , Analgesia , Animais , Ansiedade/induzido quimicamente , Encéfalo/metabolismo , Dimerização , Núcleo Dorsal da Rafe/efeitos dos fármacos , Células HEK293 , Humanos , Hipotermia/induzido quimicamente , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos
3.
J Biol Chem ; 287(25): 20851-65, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22532560

RESUMO

Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.


Assuntos
Globo Pálido/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Glândula Pineal/metabolismo , Multimerização Proteica/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética
4.
Purinergic Signal ; 9(3): 433-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23657626

RESUMO

Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Assuntos
Astrócitos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adenosina/metabolismo , Animais , Western Blotting , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Ensaio Radioligante , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Transfecção
5.
Proc Natl Acad Sci U S A ; 107(43): 18676-81, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20956312

RESUMO

It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/toxicidade , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores sigma/efeitos dos fármacos , Receptores sigma/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Transtornos Relacionados ao Uso de Cocaína/etiologia , Cricetinae , Cricetulus , Dimerização , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Estrutura Quaternária de Proteína/efeitos dos fármacos , Receptores de Dopamina D1/química , Receptores de Dopamina D1/genética , Receptores sigma/química , Receptores sigma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Receptor Sigma-1
6.
J Neurosci ; 31(44): 15629-39, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049406

RESUMO

Astrocytes play a key role in modulating synaptic transmission by controlling the available extracellular GABA via the GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that an additional level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A(1) (A(1)R) and A(2A) (A(2A)R) receptors. This regulation occurs through a complex of heterotetramers (two interacting homodimers) of A(1)R-A(2A)R that signal via two different G-proteins, G(s) and G(i/o), and either enhances (A(2A)R) or inhibits (A(1)R) GABA uptake. These results provide novel mechanistic insight into how G-protein-coupled receptor heteromers signal. Furthermore, we uncover a previously unknown mechanism in which adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores A2 de Adenosina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Bactérias/genética , Biotinilação , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Proteínas Luminescentes/genética , Modelos Biológicos , Ácidos Nipecóticos/farmacologia , Fenilisopropiladenosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Purinérgicos/farmacologia , Ratos , Ratos Wistar , Receptores A2 de Adenosina/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Transfecção/métodos , Trítio/metabolismo
7.
Nat Methods ; 5(8): 727-33, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18587404

RESUMO

Identification of higher-order oligomers in the plasma membrane is essential to decode the properties of molecular networks controlling intercellular communication. We combined bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) in a technique called sequential BRET-FRET (SRET) that permits identification of heteromers formed by three different proteins. In SRET, the oxidation of a Renilla luciferase (Rluc) substrate by an Rluc fusion protein triggers acceptor excitation of a second fusion protein by BRET and subsequent FRET to a third fusion protein. We describe two variations of SRET that use different Rluc substrates with appropriately paired acceptor fluorescent proteins. Using SRET, we identified complexes of cannabinoid CB(1), dopamine D(2) and adenosine A(2A) receptors in living cells. SRET is an invaluable technique to identify heteromeric complexes of more than two neurotransmitter receptors, which will allow us to better understand how signals are integrated at the molecular level.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/análise , Proteínas Luminescentes/metabolismo , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Linhagem Celular , Sobrevivência Celular , Humanos , Proteínas Luminescentes/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/química
8.
J Biol Chem ; 284(41): 28058-28068, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19632986

RESUMO

The Ca(2+)-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D(2) receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D(2) receptor, within an Arg-rich epitope that is also involved in the binding to G(i/o) proteins and to the adenosine A(2A) receptor, with the formation of A(2A)-D(2) receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A(2A) receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A(2A)-D(2) receptor oligomerization. BRET competition experiments indicated that, in the A(2A)-D(2) receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A(2A) receptor. Furthermore, Ca(2+) was found to induce conformational changes in the CaM-A(2A)-D(2) receptor oligomer and to selectively modulate A(2A) and D(2) receptor-mediated MAPK signaling in the A(2A)-D(2) receptor heteromer. These results may have implications for basal ganglia disorders, since A(2A)-D(2) receptor heteromers are being considered as a target for anti-parkinsonian agents.


Assuntos
Calmodulina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/química , Calmodulina/genética , Linhagem Celular , Dopamina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Dados de Sequência Molecular , Complexos Multiproteicos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
J Neurochem ; 114(4): 972-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20477947

RESUMO

Pharmacological characterization of adenosine A(1) and A(2A) receptors in human brain caudate nucleus membranes led to non-cooperative binding of radiolabelled ligands. In human caudate nucleus but not in cortex, the agonist binding to A(1) receptors was modulated by the agonist binding to A(2A) receptors indicating a functional negative cross-talk. Accordingly, the A(1) receptor-activation-mediated G(i)-dependent guanosine 5'-o-(3-[(35)S]thio-triphosphate) binding was modulated by agonist binding to A(2A) receptors. A(2A) receptors occupation led to a decrease in the potency of A(1) receptor agonists. These results indicate that A(1) but not A(2A) receptors activation, likely occurring at low adenosine concentrations, engages a G(i)-mediated signaling; however, when both receptors are occupied by adenosine, there is an A(2A) receptor-mediated impairment of G(i)-operated transducing units. These findings are relevant to get insight into the complex relationships derived from co-expression of multiple neurotransmitter/neuromodulator receptors subtypes that individually are coupled to different G proteins. A further finding was the demonstration that the A(2A) receptor agonist, CGS 21680, at high concentrations able to significantly bind to the A(1) receptor, behaved as a partial agonist of the later receptor. This fact might be taken into account when characterizing CGS 21680 actions in human cells expressing A(1) receptors when the compound is used at micromolar concentrations.


Assuntos
Núcleo Caudado/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Receptor Cross-Talk/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Ligação Competitiva/fisiologia , Núcleo Caudado/efeitos dos fármacos , Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Complexos Multiproteicos/agonistas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
10.
J Pharmacol Exp Ther ; 332(3): 876-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20026675

RESUMO

The indoloquinolizidine-peptide 28 [(3S,12bR)-N-((S)-1-((S)-1-((S)-2-carbamoylpyrrolidin-1-yl)-3-(4-fluorophenyl)-1-oxopropan-2-ylamino)-4-cyclohexyl-1-oxobutan-2-yl)-1,2,3,4,6,7,12, 12b-octahydroindolo[2,3-a]quinolizine-3-carboxamide], a trans-indoloquinolizidine-peptide hybrid obtained by a combinatorial approach, behaved as an orthosteric ligand of all dopamine D(2)-like receptors (D(2), D(3), and D(4)) and dopamine D(5) receptors, but as a negative allosteric modulator of agonist and antagonist binding to striatal dopamine D(1) receptors. Indoloquinolizidine-peptide 28 induced a concentration-dependent hyperbolic increase in the antagonist apparent equilibrium dissociation constant values and altered the dissociation kinetics of dopamine D(1) receptor antagonists. The negative allosteric modulation was also found when agonist binding to D(1) receptors was assayed. Indoloquinolizidine-peptide 28 was a weak ago-allosteric modulator but markedly led to a decreased potency without decreasing the maximum partial/full agonist-mediated effect on cAMP levels. Compounds able to decrease the potency while preserving the efficacy of D(1) receptor agonists are promising for exploration in psychotic pathologies.


Assuntos
Oligopeptídeos/farmacologia , Quinolizidinas/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Regulação Alostérica , Benzazepinas/farmacologia , Linhagem Celular , AMP Cíclico/biossíntese , Agonismo Parcial de Drogas , Humanos , Ligantes , Ensaio Radioligante , Receptores de Dopamina D2/metabolismo
11.
Trends Biochem Sci ; 30(7): 360-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951182

RESUMO

The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.


Assuntos
Ligação Competitiva , Membrana Celular/química , Modelos Biológicos , Receptores de Superfície Celular/química , Animais , Membrana Celular/metabolismo , Dimerização , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo
12.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513388

RESUMO

Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doença de Huntington/metabolismo , Receptores de Dopamina D1 , Receptores Histamínicos H3 , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Piperidinas/farmacologia , Receptores de Dopamina D1/química , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Córtex Visual/citologia
13.
Trends Biochem Sci ; 28(5): 238-43, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12765835

RESUMO

G-protein-coupled receptors form homomers and heteromers; agonist-induced conformational changes within interacting receptors of the oligomer modify their pharmacology, signalling and/or trafficking. When these receptors are activated, the oligomers rearrange and cluster and a novel mechanism of receptor-operation regulation by oligomer intercommunication is possible. This intercommunication would be assisted by components of the plasma membrane and by scaffolding proteins. Receptor cross-sensitization, cross-desensitization and novel, integrated receptor responses can then develop between oligomeric receptor complexes of the cluster without direct contact between them. This concept gives a new perspective to the understanding of neurotransmission and neuronal plasticity.


Assuntos
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dimerização , Humanos , Estrutura Quaternária de Proteína , Transdução de Sinais
14.
J Neurochem ; 107(1): 161-70, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18680557

RESUMO

It has been shown that adenosine deaminase (ADA; EC 3.5.4.4) behaves as an ecto-enzyme anchored to membrane proteins, among them A(1) adenosine receptors (A(1)Rs). Bovine ADA interacts with A(1)Rs from many species and regulates agonists binding to receptors in an activity-independent form. However, it was not known whether human ADA exerted any effect on the agonist binding to human A(1)Rs, because of both technical difficulties in obtaining pure human ADA and tissues containing human A(1)Rs. In this study, human ADA was purified to homogeneity. Taking in consideration that A(1)Rs form homodimers and taking advantage of a new procedure to fit binding data to receptors dimers, which allows to calculate ligand dissociation constants and the degree of cooperativity between the two subunits in the dimer, here it is demonstrated that human ADA markedly enhances the agonist and antagonist affinity and abolishes the negative cooperativity on agonist binding to human striatal A(1)Rs. ADA also increases the ability of the agonist to decrease the forskolin-induced cAMP levels. The results show that human ADA, apart from reducing the adenosine concentration and thus preventing A(1)R desensitization, binds to A(1)R behaving as an allosteric effector that markedly enhances agonist affinity and increases receptor functionality. The physiological role of the interaction is to make receptors more sensitive to adenosine. This powerful regulation has important implications for the physiology and pharmacology of neuronal A(1)Rs.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Núcleo Caudado/metabolismo , Neurônios/metabolismo , Receptor A1 de Adenosina/metabolismo , Adenosina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Regulação Alostérica/fisiologia , Ligação Competitiva/fisiologia , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Ensaio Radioligante , Especificidade da Espécie , Trítio/metabolismo
15.
Pharmacol Ther ; 116(3): 343-54, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17935788

RESUMO

Almost all existing models that explain heptahelical G-protein-coupled receptor (GPCR) operation are based on the occurrence of monomeric receptor species. However, an increasing number of studies show that many G-protein-coupled heptahelical membrane receptors (HMR) are expressed in the plasma membrane as dimers. We here review the approaches for fitting ligand binding data that are based on the existence of receptor monomers and also the new ones based on the existence of receptor dimers. The reasons for equivocal interpretations of the fitting of data to receptor dimers, assuming they are monomers, are also discussed. A recently devised model for receptor dimers provides a new approach for fitting data that eventually gives more accurate and physiological relevant parameters. Fitting data using the new procedure gives not only the equilibrium dissociation constants for high- and low-affinity binding to receptor dimers but also a "cooperativity index" that reflects the molecular communication within the dimer. A comprehensive way to fit binding data from saturation isotherms and from competition assays to a dimer receptor model is reported and compared with the traditional way of fitting data. The new procedure can be applied to any receptor forming dimers; from receptor tyrosine kinases to intracellular receptors (e.g., estrogen receptor) and in general for ligand binding to proteins forming dimers.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Ligação Competitiva , Dimerização , Humanos , Matemática , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Teóricos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química
16.
ScientificWorldJournal ; 8: 1088-97, 2008 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-18956124

RESUMO

Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.


Assuntos
Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D2/metabolismo , Linhagem Celular , Dimerização , Transferência Ressonante de Energia de Fluorescência , Humanos , Rim/embriologia , Medições Luminescentes , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
17.
Neuropsychopharmacology ; 43(5): 964-977, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28102227

RESUMO

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.


Assuntos
Corpo Estriado/metabolismo , Estrutura Quaternária de Proteína , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Animais , Humanos , Doença de Huntington/metabolismo , Camundongos , Vias Neurais/metabolismo , Subunidades Proteicas/biossíntese
18.
J Neuroimmunol ; 185(1-2): 9-19, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17303252

RESUMO

The pivotal role that glutamate plays in the functioning of the central nervous system is well established. Several glutamate receptors and glutamate transporters have been extensively described in the central nervous system where they, respectively mediate glutamate effects and regulates extracellular glutamate levels. Recent studies have shown that glutamate not only has a role as neurotransmitter, but also as an important immunomodulator. In this regard, several glutamate receptors have recently been described on the T-cell surface, whereas glutamate transporters have reportedly been expressed in antigen presenting cells such as dendritic cells and macrophages. On the other hand, an increasing number of reports have described a protective autoimmune mechanism in which autoantigen specific T cells in the central nervous system protect neurons against glutamate neurotoxicity. This review integrates and summarises different findings in this emerging area. A role of glutamate as a key immunomodulator in the initiation and development of T-cell-mediated immunity in peripheral tissues as well as in the central nervous system is suggested.


Assuntos
Sistema Nervoso Central/imunologia , Ácido Glutâmico/imunologia , Imunidade Celular , Neuroimunomodulação , Linfócitos T/imunologia , Animais , Ácido Glutâmico/metabolismo , Humanos , Ativação Linfocitária/imunologia , Receptores de Glutamato/imunologia , Receptores de Glutamato/metabolismo
19.
J Mol Neurosci ; 26(2-3): 125-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16012186

RESUMO

Using pull-down and mass spectrometry experiments, we have previously demonstrated that adenosine A2A-dopamine D2 receptor-receptor heteromerization depends on an electrostatic interaction between an Arg-rich epitope from the third intracellular loop of the D2 receptor (217RRRRKR222) and two adjacent Asp residues (DD401-402) or a phosphorylated Ser (pS374) residue in the carboxyl terminus of the A2A receptor. It has been demonstrated recently that a specific region in the carboxyl terminus of the dopamine D1 receptor (L387-L416) and a specific region in the carboxyl terminus of the NR1-1 subunit of the NMDA receptor (E834-S938) are involved in D1-NMDA receptor-receptor heteromerization. Careful perusal of these interacting regions shows the presence of a phosphorylated serine (pS397) and adjacent glutamates (EE404-405) in the D1 receptor, whereas NR1-1 contains three adjacent Arg residues (RRR893-896). These epitopes are highly conserved in all species, a sign that the epitopes are likely to be involved in a physiologically significant activity. If similar epitopes are found to be involved in the formation of receptor heteromers other than A2A-D2 and D1-NMDA, the epitope-epitope electrostatic interaction might represent an important general mechanism underlying receptor- receptor interactions.


Assuntos
Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Eletricidade Estática
20.
J Mol Neurosci ; 26(2-3): 221-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16012195

RESUMO

G protein-coupled receptors (GPCRs) are targets for therapy in a variety of neurological diseases. Using adenosine A1 receptors (A1Rs) as paradigm of GPCRs, this review focuses on how protein-protein interactions, from monomers to heteromers, can contribute to hormone/neurotransmitter/neuromodulator regulation. The interaction of A1Rs with other membrane receptors, enzymes, and adaptor and scaffolding proteins is relevant for receptor traffic, internalization, and desensitization, and A1Rs are extremely important in driving signaling through different intracellular pathways. There is even the possibility of linking together GPCR heteromeric complexes with ion channel receptors in a receptor mosaic that might have special integrative value and might constitute the molecular basis for learning and memory.


Assuntos
Receptor A1 de Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Animais , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Neurotransmissores/farmacologia , Neurotransmissores/uso terapêutico , Receptor A1 de Adenosina/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA