Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Development ; 148(4)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33234713

RESUMO

The size, shape and insertion sites of muscles enable them to carry out their precise functions in moving and supporting the skeleton. Although forelimb anatomy is well described, much less is known about the embryonic events that ensure individual muscles reach their mature form. A description of human forelimb muscle development is needed to understand the events that control normal muscle formation and to identify what events are disrupted in congenital abnormalities in which muscles fail to form normally. We provide a new, 4D anatomical characterisation of the developing human upper limb muscles between Carnegie stages 18 and 22 using optical projection tomography. We show that muscles develop in a progressive wave, from proximal to distal and from superficial to deep. We show that some muscle bundles undergo splitting events to form individual muscles, whereas others translocate to reach their correct position within the forelimb. Finally, we show that palmaris longus fails to form from early in development. Our study reveals the timings of, and suggests mechanisms for, crucial events that enable nascent muscle bundles to reach their mature form and position within the human forelimb.


Assuntos
Desenvolvimento Embrionário , Membro Anterior/embriologia , Músculo Esquelético/embriologia , Extremidade Superior/embriologia , Animais , Biomarcadores , Membro Anterior/anatomia & histologia , Membro Anterior/metabolismo , Histocitoquímica , Humanos , Imuno-Histoquímica , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Transporte Proteico , Extremidade Superior/anatomia & histologia
3.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423345

RESUMO

We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.


Assuntos
Membro Posterior/anormalidades , Botões de Extremidades/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Botões de Extremidades/citologia , Botões de Extremidades/crescimento & desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Anat ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624036

RESUMO

Radial dysplasia (RD) is a congenital upper limb birth defect that presents with changes to the upper limb anatomy, including a shortened or absent radius, bowed ulna, thumb malformations, a radially deviated hand and a range of muscle and tendon malformations, including absent or abnormally shaped muscle bundles. Current treatments to address wrist instability caused by a shortened or absent radius frequently require an initial soft tissue distraction intervention followed by a wrist stabilisation procedure. Following these surgical interventions, however, recurrence of the wrist deviation remains a common, long-term problem following treatment. The impact of the abnormal soft connective tissue (muscle and tendon) anatomy on the clinical presentation of RD and the complications following surgery are not understood. To address this, we have examined the muscle, fascia and the fascial irregular connective tissue (ICT) fibroblasts found within soft connective tissues, from RD patients. We show that ICT fibroblasts isolated from RD patients are functionally abnormal when compared to the same cells isolated from control patients and secrete a relatively disordered extracellular matrix (ECM). Furthermore, we show that ICT fibroblast dysfunction is a unifying feature found in RD patients, even when the RD clinical presentation is caused by distinct genetic syndromes.

5.
Am J Respir Crit Care Med ; 207(7): 855-864, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367783

RESUMO

Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.


Assuntos
Proteínas com Domínio T , Fatores de Transcrição , Animais , Humanos , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fenótipo
6.
J Pathol ; 253(3): 315-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197044

RESUMO

The dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding. We have compared abdomen, back and cheek, three anatomical sites representing the distinct embryonic tissues from which the dermis can arise, during homeostasis and wound repair using RNA sequencing, histology and fibroblast cultures. Our transcriptional analyses demonstrate differences between body sites that reflect their diverse origins. Moreover, we report histological and transcriptional variations during a wound response, including site differences in ECM composition, cell migration and proliferation, and re-enactment of distinct developmental programmes. These findings reveal profound regional variation in the mechanisms of tissue repair. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Derme/anatomia & histologia , Derme/fisiologia , Homeostase/fisiologia , Cicatrização/fisiologia , Animais , Camundongos
7.
PLoS Genet ; 12(12): e1006521, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27992425

RESUMO

The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation.


Assuntos
Desenvolvimento Embrionário/genética , Membro Anterior/crescimento & desenvolvimento , Deformidades Congênitas dos Membros/genética , Proteínas com Domínio T/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Comunicação Interatrial/genética , Comunicação Interatrial/patologia , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Deformidades Congênitas dos Membros/patologia , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/patologia , Camundongos , Somitos/crescimento & desenvolvimento , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/patologia
8.
PLoS Genet ; 12(3): e1005738, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27019019

RESUMO

The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.


Assuntos
Quirópteros/genética , Membro Anterior/metabolismo , Proteínas de Homeodomínio/genética , Organogênese/genética , Vertebrados/genética , Animais , Quirópteros/crescimento & desenvolvimento , Embrião de Mamíferos , Membro Anterior/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Proteínas de Homeodomínio/biossíntese , Camundongos , Alinhamento de Sequência , Análise de Sequência , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Vertebrados/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
9.
Semin Cell Dev Biol ; 49: 102-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643124

RESUMO

The limbs are a significant evolutionary innovation that enabled vertebrates to diversify and colonise new environments. Tetrapods have two pairs of limbs, forelimbs in the upper body and hindlimbs in the lower body. The morphologies of the forelimbs and hindlimbs are distinct, reflecting their specific locomotory functions although they share many common signalling networks that regulate their development. The paired appendages in vertebrates form at fixed positions along the rostral-caudal axis and this occurs as a consequence of earlier subdivision of the lateral plate mesoderm (LPM) into regions with distinct limb forming potential. In this review, we discuss the molecular mechanisms that confer a broad region of the flank with limb-forming potential and its subsequent refinement into distinct forelimb-forming, hindlimb-forming and interlimb territories.


Assuntos
Membro Anterior/embriologia , Membro Posterior/embriologia , Mesoderma/embriologia , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Botões de Extremidades/embriologia , Ativação Transcricional
10.
PLoS Genet ; 10(3): e1004245, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651482

RESUMO

Tight control over gene expression is essential for precision in embryonic development and acquisition of the regulatory elements responsible is the predominant driver for evolution of new structures. Tbx5 and Tbx4, two genes expressed in forelimb and hindlimb-forming regions respectively, play crucial roles in the initiation of limb outgrowth. Evolution of regulatory elements that activate Tbx5 in rostral LPM was essential for the acquisition of forelimbs in vertebrates. We identified such a regulatory element for Tbx5 and demonstrated Hox genes are essential, direct regulators. While the importance of Hox genes in regulating embryonic development is clear, Hox targets and the ways in which each protein executes its specific function are not known. We reveal how nested Hox expression along the rostro-caudal axis restricts Tbx5 expression to forelimb. We demonstrate that Hoxc9, which is expressed in caudal LPM where Tbx5 is not expressed, can form a repressive complex on the Tbx5 forelimb regulatory element. This repressive capacity is limited to Hox proteins expressed in caudal LPM and carried out by two separate protein domains in Hoxc9. Forelimb-restricted expression of Tbx5 and ultimately forelimb formation is therefore achieved through co-option of two characteristics of Hox genes; their colinear expression along the body axis and the functional specificity of different paralogs. Active complexes can be formed by Hox PG proteins present throughout the rostral-caudal LPM while restriction of Tbx5 expression is achieved by superimposing a dominant repressive (Hoxc9) complex that determines the caudal boundary of Tbx5 expression. Our results reveal the regulatory mechanism that ensures emergence of the forelimbs at the correct position along the body. Acquisition of this regulatory element would have been critical for the evolution of limbs in vertebrates and modulation of the factors we have identified can be molecular drivers of the diversity in limb morphology.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Membro Anterior/crescimento & desenvolvimento , Genes Homeobox , Proteínas com Domínio T/genética , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Proteínas com Domínio T/metabolismo , Ativação Transcricional , Vertebrados
11.
Proc Natl Acad Sci U S A ; 111(50): 17917-22, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25468972

RESUMO

The sternum bone lies at the ventral midline of the thorax where it provides a critical attachment for the pectoral muscles that allow the forelimbs to raise the body from the ground. Among tetrapods, sternum morphology is correlated with the mode of locomotion: Avians that fly have a ventral extension, or keel, on their sterna, which provides an increased area for flight muscle attachment. The sternum is fused with the ribs attaching on either side; however, unlike the ribs, the sternal precursors do not originate from the somites. Despite the crucial role of the sternum in tetrapod locomotion, little attention has been given to its acquisition, evolution, and embryological development. We demonstrate an essential role for the T-box transcription factor gene Tbx5 in sternum and forelimb formation and show that both structures share an embryological origin within the lateral plate mesoderm. Consistent with this shared origin and role of Tbx5, sternum defects are a characteristic feature of Holt-Oram Syndrome (OMIM 142900) caused by mutations in TBX5. We demonstrate a link between sternum size and forelimb use across avians and provide evidence that modulation of Tbx5 expression underlies the reduction in sternum and wing size in a flightless bird, the emu. We demonstrate that Tbx5 is a common node in the genetic pathways regulating forelimb and sternum development, enabling specific adaptations of these features without affecting other skeletal elements and can also explain the linked adaptation of sternum and forelimb morphology correlated with mode of locomotion.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Morfogênese/fisiologia , Esterno/embriologia , Proteínas com Domínio T/metabolismo , Adaptação Biológica/fisiologia , Animais , Pesos e Medidas Corporais , Embrião de Galinha , Imunofluorescência , Membro Anterior/embriologia , Hibridização In Situ , Camundongos , Especificidade da Espécie , Esterno/anatomia & histologia
12.
Development ; 139(17): 3180-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872086

RESUMO

Tbx4 and Tbx5 are two closely related T-box genes that encode transcription factors expressed in the prospective hindlimb and forelimb territories, respectively, of all jawed vertebrates. Despite their striking limb type-restricted expression pattern, we have shown that these genes do not participate in the acquisition of limb type-specific morphologies. Instead, Tbx4 and Tbx5 play similar roles in the initiation of hindlimb and forelimb outgrowth, respectively. We hypothesized that different combinations of Hox proteins expressed in different rostral and caudal domains of the lateral plate mesoderm, where limb induction occurs, might be involved in regulating the limb type-restricted expression of Tbx4 and Tbx5 and in the later determination of limb type-specific morphologies. Here, we identify the minimal regulatory element sufficient for the earliest forelimb-restricted expression of the mouse Tbx5 gene and show that this sequence is Hox responsive. Our results support a mechanism in which Hox genes act upstream of Tbx5 to control the axial position of forelimb formation.


Assuntos
Padronização Corporal/genética , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Morfogênese/genética , Proteínas com Domínio T/metabolismo , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Eletroporação , Membro Anterior/metabolismo , Hibridização In Situ , Camundongos
13.
Development ; 138(24): 5301-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22071103

RESUMO

The forelimbs and hindlimbs of vertebrates are morphologically distinct. Pitx1, expressed in the hindlimb bud mesenchyme, is required for the formation of hindlimb characteristics and produces hindlimb-like morphologies when misexpressed in forelimbs. Pitx1 is also necessary for normal expression of Tbx4, a transcription factor required for normal hindlimb development. Despite the importance of this protein in these processes, little is known about its mechanism of action. Using a transgenic gene replacement strategy in a Pitx1 mutant mouse, we have uncoupled two discrete functions of Pitx1. We show that, firstly, this protein influences hindlimb outgrowth by regulating Tbx4 expression levels and that, subsequently, it shapes hindlimb bone and soft tissue morphology independently of Tbx4. We provide the first description of how Pitx1 sculpts the forming hindlimb skeleton by localised modulation of the growth rate of discrete elements.


Assuntos
Membro Posterior/crescimento & desenvolvimento , Fatores de Transcrição Box Pareados/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Padronização Corporal , Desenvolvimento Ósseo , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/metabolismo , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos
14.
JBMR Plus ; 7(2): e10707, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751415

RESUMO

The identity of the cells that form the periosteum during development is controversial with current dogma suggesting these are derived from a Sox9-positive progenitor. Herein, we characterize a newly created Prrx1eGFP reporter transgenic mouse line during limb formation and postnatally. Interestingly, in the embryo Prrx1eGFP-labeled cells become restricted around the Sox9-positive cartilage anlage without themselves becoming Sox9-positive. In the adult, the Prrx1eGFP transgene live labels a subpopulation of cells within the periosteum that are enriched at specific sites, and this population is diminished in aged mice. The green fluorescent protein (GFP)-labeled subpopulation can be isolated using fluorescence-activated cell sorting (FACS) and represents approximately 8% of all isolated periosteal cells. The GFP-labeled subpopulation is significantly more osteogenic than unlabeled, GFP-negative periosteal cells. In addition, the osteogenic and chondrogenic capacity of periosteal cells in vitro can be extended with the addition of fibroblast growth factor (FGF) to the expansion media. We provide evidence to suggest that osteoblasts contributing to cortical bone formation in the embryo originate from Prrx1eGFP-positive cells within the perichondrium, which possibly piggyback on invading vascular cells and secrete new bone matrix. In summary, the Prrx1eGFP mouse is a powerful tool to visualize and isolate periosteal cells and to quantify their properties in the embryo and adult. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

15.
Dev Biol ; 349(2): 204-12, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20977901

RESUMO

While limb regeneration has been extensively studied in amphibians, little is known about the initial events in limb formation in metamorphosing anurans. The small secreted integrin ligand nephronectin (npnt) is necessary for development of the metanephros in mouse. Although expressed in many tissues, its role in other developmental processes is not well-studied. Here we show that a transgene insertion that disrupts this gene ablates forelimb formation in Xenopus tropicalis. Our results suggest a novel role for integrin signalling in limb development, and represent the first insertional phenotype to be cloned in amphibians.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Xenopus/embriologia , Animais , Primers do DNA/genética , Proteínas da Matriz Extracelular/genética , Inativação Gênica , Genótipo , Hibridização In Situ , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/metabolismo , Transgenes
16.
Dev Biol ; 357(1): 108-16, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21741963

RESUMO

The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the "In-Out" mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.


Assuntos
Padronização Corporal , Membro Anterior/embriologia , Músculo Esquelético/embriologia , Animais , Embrião de Galinha , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Membro Anterior/citologia , Camundongos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Somitos/citologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
17.
Proc Natl Acad Sci U S A ; 106(51): 21726-30, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19995988

RESUMO

Paired fins/limbs are one of the most successful vertebrate innovations, since they are used for numerous fundamental activities, including locomotion, feeding, and breeding. Gene duplication events generate new genes with the potential to acquire novel functions, and two rounds of genome duplication took place during vertebrate evolution. The cephalochordate amphioxus diverged from other chordates before these events and is widely used to deduce the functions of ancestral genes, present in single copy in amphioxus, compared to the functions of their duplicated vertebrate orthologues. The T-box genes Tbx5 and Tbx4 encode two closely related transcription factors that are the earliest factors required to initiate forelimb and hind limb outgrowth, respectively. Since the genetic components proposed to be responsible for acquiring a trait during evolution are likely to be involved in the formation of that same trait in living organisms, we investigated whether the duplication of an ancestral, single Tbx4/5 gene to give rise to distinct Tbx4 and Tbx5 genes has been instrumental in the acquisition of limbs during vertebrate evolution. We analyzed whether the amphioxus Tbx4/5 gene is able to initiate limb outgrowth, and assayed the amphioxus locus for the presence of limb-forming regulatory regions. We show that AmphiTbx4/5 is able to initiate limb outgrowth and, in contrast, that the genomic locus lacks the regulatory modules required for expression that would result in limb formation. We propose that changes at the level of Tbx5 and Tbx4 expression, rather than the generation of novel protein function, have been necessary for the acquisition of paired appendages during vertebrate evolution.


Assuntos
Membro Anterior/metabolismo , Duplicação Gênica , Membro Posterior/metabolismo , Proteínas com Domínio T/genética , Vertebrados/embriologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas com Domínio T/química , Vertebrados/genética
18.
Dev Dyn ; 240(5): 1017-27, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360788

RESUMO

While the paired forelimb and hindlimb buds of vertebrates are initially morphologically homogeneous, as the limb progenitors differentiate, each individual tissue element attains a characteristic limb-type morphology that ultimately defines the constitution of the forelimb or hindlimb. This review focuses on contemporary understanding of the regulation of limb bud initiation and formation of limb-type specific morphologies and how these regulatory mechanisms evolved in vertebrates. We also attempt to clarify the definition of the terms limb-type identity and limb-type morphology that have frequently been used interchangeably. Over the last decade, three genes, Tbx4, Tbx5, and Pitx1, have been extensively studied for their roles in limb initiation and determining limb-type morphologies. The role of Tbx4 and Tbx5 in limb initiation is clearly established. However, their putative role in the generation of limb-type morphologies remains controversial. In contrast, all evidence supports a function for Pitx1 in determination of hindlimb morphologies.


Assuntos
Extremidades/embriologia , Botões de Extremidades/embriologia , Proteínas com Domínio T/metabolismo , Animais , Extremidades/crescimento & desenvolvimento , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Morfogênese/genética , Morfogênese/fisiologia , Proteínas com Domínio T/genética
20.
Dev Cell ; 11(6): 873-85, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17141161

RESUMO

A central challenge in embryonic development is to understand how growth and pattern are coordinated to direct emerging new territories during morphogenesis. Here, we report on a signaling cascade that links cell proliferation and fate, promoting formation of a distinct progenitor domain within the developing chick hypothalamus. We show that the downregulation of Shh in floor plate-like cells in the forebrain governs their progression to a distinctive, proliferating hypothalamic progenitor domain. Shh downregulation occurs via a local BMP-Tbx2 pathway, Tbx2 acting to repress Shh expression. We show in vivo and in vitro that forced maintenance of Shh in hypothalamic progenitors prevents their normal morphogenesis, leading to maintenance of the Shh receptor, ptc, and preventing progression to an Emx2(+)-proliferative progenitor state. Our data identify a molecular pathway for the downregulation of Shh via a BMP-Tbx2 pathway and provide a mechanism for expansion of a discrete progenitor domain within the developing forebrain.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Proteínas Hedgehog/fisiologia , Hipotálamo/embriologia , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Células COS , Ciclo Celular , Células Cultivadas , Embrião de Galinha , Galinhas , Chlorocebus aethiops , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipotálamo/metabolismo , Técnicas Imunoenzimáticas , Hibridização In Situ , Camundongos , Receptores Patched , Receptor Patched-1 , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T/antagonistas & inibidores , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA