RESUMO
BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.
Assuntos
COVID-19 , Vesículas Extracelulares , Proteômica , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adulto , Espectrometria de Massas em Tandem , Cromatografia LíquidaRESUMO
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Assuntos
Aminopiridinas , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Indóis , Pirazóis , Piridinas , Pirrolidinas , Quinolonas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Qualidade de Vida , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Aminofenóis/farmacologia , Aminofenóis/uso terapêutico , Mutação , Técnicas de Química SintéticaRESUMO
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Mamíferos , MutaçãoRESUMO
BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.
Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , FagocitoseRESUMO
OBJECTIVES: To ascertain whether systemic administration of mitochondria-rich fraction isolated from mesenchymal stromal cells would reduce lung, kidney, and liver injury in experimental sepsis. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Sixty C57BL/6 male mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. At 24 hours after surgery, cecal ligation and puncture and Sham animals were further randomized to receive saline or mitochondria-rich fraction isolated from mesenchymal stromal cells (3 × 106) IV. At 48 hours, survival, peritoneal bacterial load, lung, kidney, and liver injury were analyzed. Furthermore, the effects of mitochondria on oxygen consumption rate and reactive oxygen species production of lung epithelial and endothelial cells were evaluated in vitro. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of lung epithelial and endothelial cells from cecal ligation and puncture animals to mitochondria-rich fraction isolated from mesenchymal stromal cells restored oxygen consumption rate and reduced total reactive oxygen species production. Infusion of exogenous mitochondria-rich fraction from mesenchymal stromal cells (mitotherapy) reduced peritoneal bacterial load, improved lung mechanics and histology, and decreased the expression of interleukin-1ß, keratinocyte chemoattractant, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in lung tissue, while increasing keratinocyte growth factor expression and survival rate in cecal ligation and puncture-induced sepsis. Mitotherapy also reduced kidney and liver injury, plasma creatinine levels, and messenger RNA expressions of interleukin-18 in kidney, interleukin-6, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in liver, while increasing nuclear factor erythroid 2-related factor-2 and superoxide dismutase-2 in kidney and interleukin-10 in liver. CONCLUSIONS: Mitotherapy decreased lung, liver, and kidney injury and increased survival rate in cecal ligation and puncture-induced sepsis.
Assuntos
Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Sepse/complicações , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Insuficiência de Múltiplos ÓrgãosRESUMO
The acute respiratory distress syndrome (ARDS) is a multifaceted lung disorder in which no specific therapeutic intervention is able to effectively improve clinical outcomes. Despite an improved understanding of molecular mechanisms and advances in supportive care strategies, ARDS remains associated with high mortality, and survivors usually face long-term morbidity. In recent years, preclinical studies have provided mounting evidence of the potential of mesenchymal stem cell (MSC)-based therapies in lung diseases and critical illnesses. In several models of ARDS, MSCs have been demonstrated to induce anti-inflammatory and anti-apoptotic effects, improve epithelial and endothelial cell recovery, and enhance microbial and alveolar fluid clearance, thus resulting in improved lung and distal organ function and survival. Early-stage clinical trials have also demonstrated the safety of MSC administration in patients with ARDS, but further, large-scale investigations are required to assess the safety and efficacy profile of these therapies. In this review, we summarize the main mechanisms whereby MSCs have been shown to exert therapeutic effects in experimental ARDS. We also highlight questions that need to be further elucidated and barriers that must be overcome in order to efficiently translate MSC research into clinical practice.
Assuntos
Células-Tronco Mesenquimais/fisiologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Pulmão/citologia , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/metabolismoRESUMO
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated, apical anion channel that regulates ion and fluid transport in many epithelia including the airways. We have previously shown that cigarette smoke (CS) exposure to airway epithelia causes a reduction in plasma membrane CFTR expression which correlated with a decrease in airway surface hydration. The effect of CS on CFTR was dependent on an increase in cytosolic Ca2+. However, the underlying mechanism for this Ca2+-dependent, internalisation of CFTR is unknown. To gain a better understanding of the effect of Ca2+ on CFTR, we performed whole cell current recordings to study the temporal effect of raising cytosolic Ca2+ on CFTR function. We show that an increase in cytosolic Ca2+ induced a time-dependent reduction in whole cell CFTR conductance, which was paralleled by a loss of cell surface CFTR expression, as measured by confocal and widefield fluorescence microscopy. The decrease in CFTR conductance and cell surface expression were both dynamin-dependent. Single channel reconstitution studies showed that raising cytosolic Ca2+ per se had no direct effect on CFTR. In fact, the loss of CFTR plasma membrane activity correlated with activation of calcineurin, a Ca2+-dependent phosphatase, suggesting that dephosphorylation of CFTR was linked to the loss of surface expression. In support of this, the calcineurin inhibitor, cyclosporin A, prevented the Ca2+-induced decrease in cell surface CFTR. These results provide a hitherto unrecognised role for cytosolic Ca2+ in modulating the residency of CFTR at the plasma membrane through a dynamin- and calcineurin-dependent mechanism.
Assuntos
Calcineurina/fisiologia , Cálcio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Citosol/metabolismo , Dinaminas/fisiologia , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , FosforilaçãoRESUMO
Recombinant adeno-associated virus (rAAV) vector platforms have shown considerable therapeutic success in gene therapy for inherited disorders. In cystic fibrosis (CF), administration of first-generation rAAV2 was safe, but clinical benefits were not clearly demonstrated. Therefore, next-generation vectors that overcome rate-limiting steps in rAAV transduction are needed to obtain successful gene therapy for this devastating disease. In this study, we evaluated the effects of single-strand or self-complementary (sc) rAAV vectors containing single or multiple tyrosine-to-phenylalanine (Y-F) mutations in capsid surface-exposed residues on serotypes 2, 8 or 9. For this purpose, CF bronchial epithelial (CFBE) cells were transduced with rAAV vectors, and the transgene expression of enhanced green fluorescence protein (eGFP) was analyzed at different time points. The effects of vectors on the cell viability, host cell cycle and in association with co-adjuvant drugs that modulate intracellular vector trafficking were also investigated. Six rAAV vectors demonstrated greater percentage of eGFP+ cells compared to their counterparts at days 4, 7 and 10 post-transduction: rAAV2 Y(272,444,500,730)F, with 1.95-, 3.5- and 3.06-fold increases; rAAV2 Y(252,272,444,500,704,730)F, with 1.65-, 2.12-, and 2-fold increases; scrAAV2 WT, with 1.69-, 2.68-, and 2.32-fold increases; scrAAV8 Y773F, with 57-, 6.06-, and 7-fold increases; scrAAV9 WT, with 7.47-, 4.64-, and 3.66-fold increases; and scrAAV9 Y446F, with 8.39-, 4.62-, and 4.4-fold increases. At days 15, 20, and 30 post-transduction, these vectors still demonstrated higher transgene expression than transfected cells. Although the percentage of eGFP+ cells reduced during the time-course analysis, the delta mean fluorescence intensity increased. These vectors also led to increased percentage of cells in G1-phase without eliciting any cytotoxicity. Prior administration of bortezomib or genistein did not increase eGFP expression in cells transduced with either rAAV2 Y(272,444,500,730)F or rAAV2 Y(252,272,444,500,704,730)F. In conclusion, self-complementary and tyrosine capsid mutations on rAAV serotypes 2, 8, and 9 led to more efficient transduction than their counterparts in CFBE cells by overcoming the intracellular trafficking and second-strand DNA synthesis limitations.
Assuntos
Fibrose Cística/genética , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Substituição de Aminoácidos/genética , Brônquios/metabolismo , Brônquios/patologia , Brônquios/virologia , Fibrose Cística/patologia , Fibrose Cística/terapia , Fibrose Cística/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Mutação , Fenilalanina/genética , Sorogrupo , Transdução Genética/métodos , Tirosina/genéticaRESUMO
OBJECTIVES: Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. DESIGN: Animal study and primary cell culture. SETTING: Laboratory investigation. SUBJECTS: Seventy-five Wistar rats. INTERVENTIONS: Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). MEASUREMENTS AND MAIN RESULTS: Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1ß, keratinocyte-derived chemokine, transforming growth factor-ß, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. CONCLUSIONS: Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.
Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Nefropatias/etiologia , Nefropatias/cirurgia , Hepatopatias/etiologia , Hepatopatias/cirurgia , Pneumopatias/etiologia , Pneumopatias/cirurgia , Pulmão/citologia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Distribuição Aleatória , Ratos , Ratos WistarRESUMO
BACKGROUND/AIMS: Premature degradation of mutated cystic fibrosis transmembrane conductance regulator (CFTR) protein causes cystic fibrosis (CF), the commonest Mendelian disease in Caucasians. Despite recent advances in precision medicines for CF patients, many CFTR mutants have not been characterized and the effects of these new therapeutic approaches are still unclear for those mutants. METHODS: Cells transfected or stably expressing four CFTR transmembrane-domain mutants (G85E, E92K, L1077P, and M1101K) were used to: 1) characterize the mutants according to their protein expression, thermal sensitivity, and degradation pathways; 2) evaluate the effects of correctors in rescuing them; and 3) explore the effects of correctors on CFTR interactions with proteostasis components. RESULTS: All four mutants exhibited lower protein expression than did wild type-CFTR, and they were degraded by proteasomes and aggresomes. At low temperature, only cells expressing the mutants L1077P and M1101K exhibited increased CFTR maturation. Co-administration of C4 and C18 showed the greatest effect, restoring functional expression and partial stability of CFTR bearing E92K, L1077P, or M1101K at the cell surface. However, this treatment was inefficient in rectifying the defect of CFTR bearing G85E. Correctors rescued CFTR mutants by reducing their interactions with proteostasis components associated with protein retention in the endoplasmic reticulum and ubiquitination. CONCLUSION: Co-administration of C4 and C18 rescued CFTR transmembrane-domain mutants by remodeling the CFTR interactome.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Anilidas/farmacologia , Animais , Células COS , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ácidos Hidroxâmicos/farmacologia , Imunoprecipitação , Leupeptinas/farmacologia , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Temperatura , TransfecçãoRESUMO
Correcting the processing of ΔF508-CFTR, the most common mutation in cystic fibrosis, is the major goal in the development of new therapies for this disease. Here, we determined whether ΔF508 could be rescued by a combination of small-molecule correctors, and identified the mechanism by which correctors rescue the trafficking mutant of cystic fibrosis transmembrane conductance regulator (CFTR). We transfected COS-7 cells with ΔF508, created HEK-293 stably expressing ΔF508, and utilized CFBE41o(-) cell lines stably transduced with ΔF508. As shown previously, ΔF508 expressed less protein, was unstable at physiological temperature, and rapidly degraded. When the cells were treated with the combination C18 + C4 the mature C-band was expressed at the cell surface. After treatment with C18 + C4, we saw a lower rate of protein disappearance after translation was stopped with cycloheximide. To understand how this rescue occurs, we evaluated the change in the binding of proteins involved in endoplasmic reticulum-associated degradation, such as Hsp27 (HspB1) and Hsp40 (DnaJ). We saw a dramatic reduction in binding to heat shock proteins 27 and 40 following combined corrector therapy. siRNA experiments confirmed that a reduction in Hsp27 or Hsp40 rescued CFTR in the ΔF508 mutant, but the rescue was not additive or synergistic with C4 + 18 treatment, indicating these correctors shared a common pathway for rescue involving a network of endoplasmic reticulum-associated degradation proteins.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Animais , Células COS , Chlorocebus aethiops , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Humanos , Mutação , Ligação Proteica , TemperaturaRESUMO
Stargardt disease is the most common form of early onset macular degeneration. Mutations in ABCA4, a member of the ATP-binding cassette (ABC) family, are associated with Stargardt disease. Here, we have examined two disease-causing mutations in the NBD1 region of ABCA4, R1108C, and R1129C, which occur within regions of high similarity with CFTR, another ABC transporter gene, which is associated with cystic fibrosis. We show that R1108C and R1129C are both temperature-sensitive processing mutants that engage the cellular quality control mechanism and show a strong interaction with the chaperone Hsp 27. Both mutant proteins also interact with HDCAC6 and are degraded in the aggresome. We also demonstrate that novel corrector compounds that are being tested as treatment for cystic fibrosis, such as VX-809, can rescue the processing of the ABCA4 mutants, particularly their expression at the cell surface, and can reduce their binding to HDAC6. Thus, our data suggest that VX-809 can potentially be developed as a new therapy for Stargardt disease, for which there is currently no treatment.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Histona Desacetilases/metabolismo , Substâncias Protetoras/farmacologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Anilidas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP27/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Macrolídeos/farmacologia , Degeneração Macular/congênito , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Dados de Sequência Molecular , Mutação , Transporte Proteico , Proteólise , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Doença de Stargardt , TransgenesRESUMO
We evaluated whether small molecule correctors could rescue four nucleotide-binding domainâ 1 (NBD1) mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (A455E, S492F, ΔI507, and R560T). We first transfected Cos-7 cells (green monkey kidney cells) with A455E, S492F, ΔI507, or R560T and created HEK-293 (human embryonic kidney cells) cell lines stably expressing these CFTR mutations. The mutants showed lowered protein expression, instability at physiological temperature, and rapid degradation. After treatment with correctors CFFT-002, CFFT-003, C3, C4, and/or C18, the combination of C18+C4 showed the most correction and resulted in increased CFTR residing in the plasma membrane. We found a profound decrease in binding of CFTR to histone deacetylases (HDAC) 6 and 7 and heat shock proteins (Hsps) 27 and 40. Silencing Hsp27 or 40 rescued the mutants, but no additional amount of CFTR was rescued when both proteins were knocked down simultaneously. Thus, CFTR mutations in NBD1 can be rescued by a combination of correctors, and the treatment alters the interaction between mutated CFTR and the endoplasmic reticulum machinery.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , HumanosRESUMO
BACKGROUND: Silicosis is an occupational disease for which no effective treatment is currently known. Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) has shown to be safe in lung diseases. However, so far, no studies have analyzed whether bronchoscopic instillation of autologous BMDMCs is a safe route of administration in patients with silicosis. METHODS: We conducted a prospective, non-randomized, single-center longitudinal study in five patients. Inclusion criteria were age 18-50 years, chronic and accelerated silicosis, forced expiratory volume in 1 s <60 % and >40 %, forced vital capacity ≥60 % and arterial oxygen saturation >90 %. The exclusion criteria were smoking, active tuberculosis, neoplasms, autoimmune disorders, heart, liver or renal diseases, or inability to undergo bronchoscopy. BMDMCs were administered through bronchoscopy (2 × 10(7) cells) into both lungs. Physical examination, laboratory evaluations, quality of life questionnaires, computed tomography of the chest, lung function tests, and perfusion scans were performed before the start of treatment and up to 360 days after BMDMC therapy. Additionally, whole-body and planar scans were evaluated 2 and 24 h after instillation. RESULTS: No adverse events were observed during and after BMDMC administration. Lung function, quality of life and radiologic features remained stable throughout follow-up. Furthermore, an early increase of perfusion in the base of both lungs was observed and sustained after BMDMC administration. CONCLUSION: Administration of BMDMCs through bronchoscopy appears to be feasible and safe in accelerated and chronic silicosis. This pilot study provides a basis for prospective randomized trials to assess the efficacy of this treatment approach. CLINICAL TRIALS. GOV IDENTIFIER: NCT01239862 Date of Registration: November 10, 2010.
Assuntos
Transplante de Medula Óssea/métodos , Broncoscopia/métodos , Leucócitos Mononucleares/transplante , Pulmão/diagnóstico por imagem , Silicose/terapia , Adulto , Transplante de Medula Óssea/efeitos adversos , Estudos de Viabilidade , Citometria de Fluxo , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão , Projetos Piloto , Estudos Prospectivos , Capacidade de Difusão Pulmonar , Tomografia Computadorizada de Emissão de Fóton Único , Capacidade Pulmonar Total , Transplante Autólogo , Capacidade VitalRESUMO
BACKGROUND/AIMS: Vectors derived from adeno-associated viruses (AAVs) are important gene delivery tools for treating pulmonary diseases. Phosphorylation of surface-exposed tyrosine residues from AAV2 capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. We evaluated the pulmonary transduction efficiency of AAV8 vectors containing point mutations in surface-exposed capsid tyrosine residues. METHODS: Male C57BL/6 mice (20-25 g, n=24) were randomly assigned into three groups: control group animals received intratracheal (i.t.) instillation of saline (50 µl), wild-type AAV8 group, and capsid mutant Y733F AAV8 group, which received (i.t.) AAV8 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics and morphometry, vector transduction (immunohistochemistry and mRNA expression of eGFP), and inflammatory cytokines and growth factor expression were analyzed. RESULTS: Tyrosine-mutant AAV8 vectors displayed significantly increased transduction efficiency in the lung compared with their wild-type counterparts. No significant differences were observed in lung mechanics and morphometry between experimental groups. There was no evidence of inflammatory response in any group. CONCLUSION: AAV8 vectors may be useful for new therapeutic strategies for the treatment of pulmonary diseases.
Assuntos
Capsídeo , Dependovirus/genética , Vetores Genéticos , Pulmão/fisiopatologia , Tirosina/genética , Animais , Sequência de Bases , Citocinas/genética , Primers do DNA , Proteínas de Fluorescência Verde/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
OBJECTIVE: The advantage of using autologous bone marrow-derived mononuclear cells to treat acute respiratory distress syndrome patients is to prevent immunological rejection. However, bone marrow-derived mononuclear cells may be altered by different acute respiratory distress syndrome etiologies, resulting in questionable efficacy and thus limited clinical application. We aimed to investigate the effects of bone marrow-derived mononuclear cells obtained from healthy and acute respiratory distress syndrome donors on pulmonary and extrapulmonary acute respiratory distress syndrome. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: Two hundred and twenty-five C57BL/6 mice. INTERVENTIONS: Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide intratracheally (ARDSp) or intraperitoneally (ARDSexp). Control mice (Healthy) received saline solution intratracheally (Cp) or intraperitoneally (Cexp). After 24 hours, whole bone marrow cells were analyzed in vitro: 1) colony-forming unit-fibroblasts and 2) hematopoietic stem cells, neutrophils, T helper lymphocytes, B lymphocytes, and nonhematopoietic precursors. After cell characterization, all groups received saline or bone marrow-derived mononuclear cells (2 × 10), obtained from Cp, Cexp, ARDSp, and ARDSexp donor mice, IV, on day 1. MEASUREMENTS AND MAIN RESULTS: On day 1, in ARDSp, different patterns of colony formation were found, with nonstromal cells (mainly neutrophils) predominating over fibroblastoid colonies. In ARDSexp, irregular colony-forming unit-fibroblasts morphology with dispersed proliferating colonies and a greater number of hematopoietic stem cells were observed. In ARDSp, colony-forming unit-fibroblasts count was higher but not measurable in ARDSexp. In ARDSp, monocytes and T lymphocytes were increased and hematopoietic precursor cells reduced, with no significant changes in ARDSexp. On day 7, bone marrow-derived mononuclear cells improved survival and attenuated changes in lung mechanics, alveolar collapse, inflammation, pulmonary fibrosis, and apoptosis in the lung and distal organs, regardless of donor type. CONCLUSIONS: Bone marrow-derived mononuclear cells from ARDSp and ARDSexp donors showed different characteristics but were as effective as cells obtained from healthy donors in reducing inflammation and remodeling, suggesting the utility of autologous transplant of bone marrow-derived mononuclear cells in the clinical setting.
Assuntos
Células da Medula Óssea/citologia , Síndrome do Desconforto Respiratório/terapia , Transplante de Células-Tronco/métodos , Animais , Feminino , Fibroblastos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Mecânica RespiratóriaRESUMO
We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.
Assuntos
Células da Medula Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do TratamentoRESUMO
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
RESUMO
The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.
Assuntos
Benzoatos , Benzopiranos , Regulador de Condutância Transmembrana em Fibrose Cística , Pirazóis , Piridinas , Pirrolidinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Mutação , Aminofenóis/uso terapêuticoRESUMO
This narrative review delves into the intricate interplay between the lungs and the kidneys, with a focus on elucidating the pathogenesis of diseases influenced by immunological factors, acid-base regulation, and blood gas disturbances, as well as assessing the effects of various therapeutic modalities on these interactions. Key disorders, such as anti-glomerular basement membrane (anti-GBM) disease, the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and Anti-neutrophil Cytoplasmic Antibodies (ANCA) associated vasculitis (AAV), are also examined to shed light on their underlying mechanisms. This review also explores the relationship between acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI), emphasizing how inflammatory mediators can lead to systemic damage and impact multiple organs. In ARDS, fluid overload exacerbates pulmonary edema, while imbalances in blood volume, such as hypovolemia or hypervolemia, can precipitate renal dysfunction. The review highlights how mechanical ventilation strategies can compromise renal blood flow, trigger systemic inflammation, and induce hemodynamic and neurohormonal alterations, all contributing to lung and kidney damage. The impact of extracorporeal membrane oxygenation (ECMO) on lung-kidney interactions is evaluated, highlighting its role in severe respiratory failure and its renal implications. Emerging therapies, such as mesenchymal stem cells and extracellular vesicles, are discussed as promising avenues to mitigate organ damage and enhance outcomes in critically ill patients. Overall, this review offers a nuanced exploration of lung-kidney dynamics, bridging historical insights with contemporary perspectives. It underscores the clinical significance of these interactions in critically ill patients and advocates for integrated management approaches to optimize patient outcomes.