Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Clin Invest ; 53(1): e13881, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169086

RESUMO

BACKGROUND: The efficacy and safety of high versus medium doses of glucocorticoids for the treatment of patients with COVID-19 has shown mixed outcomes in controlled trials and observational studies. We aimed to evaluate the effectiveness of methylprednisolone 250 mg bolus versus dexamethasone 6 mg in patients with severe COVID-19. METHODS: A randomised, open-label, controlled trial was conducted between February and August 2021 at four hospitals in Spain. The trial was suspended after the first interim analysis since the investigators considered that continuing the trial would be futile. Patients were randomly assigned in a 1:1 ratio to receive dexamethasone 6 mg once daily for up to 10 days or methylprednisolone 250 mg once daily for 3 days. RESULTS: Of the 128 randomised patients, 125 were analysed (mean age 60 ± 17 years; 82 males [66%]). Mortality at 28 days was 4.8% in the 250 mg methylprednisolone group versus 4.8% in the 6 mg dexamethasone group (absolute risk difference, 0.1% [95% CI, -8.8 to 9.1%]; p = 0.98). None of the secondary outcomes (admission to the intensive care unit, non-invasive respiratory or high-flow oxygen support, additional immunosuppressive drugs, or length of stay), or prespecified sensitivity analyses were statistically significant. Hyperglycaemia was more frequent in the methylprednisolone group at 27.0 versus 8.1% (absolute risk difference, -18.9% [95% CI, -31.8 to - 5.6%]; p = 0.007). CONCLUSIONS: Among severe but not critical patients with COVID-19, 250 mg/d for 3 days of methylprednisolone compared with 6 mg/d for 10 days of dexamethasone did not result in a decrease in mortality or intubation.


Assuntos
COVID-19 , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Metilprednisolona , SARS-CoV-2 , Dexametasona , Resultado do Tratamento
2.
J Immunol ; 197(6): 2145-56, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27511737

RESUMO

The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies.


Assuntos
Hepatite Autoimune/etiologia , Interleucina-12/genética , Fígado/metabolismo , Animais , Dependovirus/genética , Feminino , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Hipergamaglobulinemia/etiologia , Tolerância Imunológica , Imunossupressores/uso terapêutico , Interferon gama/biossíntese , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/fisiologia , Linfócitos T/imunologia
3.
Mol Ther ; 24(6): 1100-1105, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26948440

RESUMO

Recombinant adeno-associated viral vectors (rAAV) currently constitute a real therapeutic strategy for the sustained correction of diverse genetic conditions. Though a wealth of preclinical and clinical studies have been conducted with rAAV, the oncogenic potential of these vectors is still controversial, particularly when considering liver-directed gene therapy. Few preclinical studies and the recent discovery of incomplete wild-type AAV2 genomes integrated in human hepatocellular carcinoma biopsies have raised concerns on rAAV safety. In the present study, we have characterized the integration of both complete and partial rAAV2/5 genomes in nonhuman primate tissues and clinical liver biopsies from a trial aimed to treat acute intermittent porphyria. We applied a new multiplex linear amplification-mediated polymerase chain reaction (PCR) assay capable of detecting integration events that are originated throughout the rAAV genome. The integration rate was low both in nonhuman primates and patient's samples. Importantly, no integration clusters or events were found in genes previously reported to link rAAV integration with hepatocellular carcinoma development, thus showing the absence of genotoxicity of a systemically administered rAAV2/5 in a large animal model and in the clinical context.


Assuntos
Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Fígado/efeitos dos fármacos , Porfiria Aguda Intermitente/terapia , Animais , Dependovirus/genética , Terapia Genética , Vetores Genéticos/efeitos adversos , Humanos , Macaca fascicularis , Recombinação Genética , Análise de Sequência de DNA/métodos , Transdução Genética , Integração Viral
4.
J Hepatol ; 65(4): 776-783, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27212246

RESUMO

BACKGROUND & AIMS: Acute intermittent porphyria (AIP) results from porphobilinogen deaminase (PBGD) haploinsufficiency, which leads to hepatic over-production of the neurotoxic heme precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA) and the occurrence of neurovisceral attacks. Severe AIP is a devastating disease that can only be corrected by liver transplantation. Gene therapy represents a promising curative option. The objective of this study was to investigate the safety of a recombinant adeno-associated vector expressing PBGD (rAAV2/5-PBGD) administered for the first time in humans for the treatment of AIP. METHODS: In this phase I, open label, dose-escalation, multicenter clinical trial, four cohorts of 2 patients each received a single intravenous injection of the vector ranging from 5×10(11) to 1.8×10(13) genome copies/kg. Adverse events and changes in urinary PBG and ALA and in the clinical course of the disease were periodically evaluated prior and after treatment. Viral shedding, immune response against the vector and vector persistence in the liver were investigated. RESULTS: Treatment was safe in all cases. All patients developed anti-AAV5 neutralizing antibodies but no cellular responses against AAV5 or PBGD were observed. There was a trend towards a reduction of hospitalizations and heme treatments, although ALA and PBG levels remained unchanged. Vector genomes and transgene expression could be detected in the liver one year after therapy. CONCLUSIONS: rAAV2/5-PBGD administration is safe but AIP metabolic correction was not achieved at the doses tested in this trial. Notwithstanding, the treatment had a positive impact in clinical outcomes in most patients. LAY SUMMARY: Studies in an acute intermittent porphyria (AIP) animal model have shown that gene delivery of PBGD to hepatocytes using an adeno-associated virus vector (rAAV2/5-PBG) prevent mice from suffering porphyria acute attacks. In this phase I, open label, dose-escalation, multicenter clinical trial we show that the administration of rAAV2/5-PBGD to patients with severe AIP is safe but metabolic correction was not achieved at the doses tested; the treatment, however, had a positive but heterogeneous impact on clinical outcomes among treated patients and 2 out of 8 patients have stopped hematin treatment. CLINICAL TRIAL NUMBER: The observational phase was registered at Clinicaltrial.gov as NCT 02076763. The interventional phase study was registered at EudraCT as n° 2011-005590-23 and at Clinicaltrial.gov as NCT02082860.


Assuntos
Porfiria Aguda Intermitente , Ácido Aminolevulínico , Animais , Terapia Genética , Humanos , Hidroximetilbilano Sintase , Camundongos
5.
Front Neuroanat ; 11: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239341

RESUMO

Adeno-associated viruses (AAVs) have become highly promising tools for research and clinical applications in the central nervous system (CNS). However, specific delivery of genes to the cell type of interest is essential for the success of gene therapy and therefore a correct selection of the promoter plays a very important role. Here, AAV8 vectors carrying enhanced green fluorescent protein (eGFP) as reporter gene under the transcriptional control of different CNS-specific promoters were used and compared with a strong ubiquitous promoter. Since one of the main limitations of AAV-mediated gene delivery lies in its restricted cloning capacity, we focused our work on small-sized promoters. We tested the transduction efficacy and specificity of each vector after stereotactic injection into the mouse striatum. Three glia-specific AAV vectors were generated using two truncated forms of the human promoter for glial fibrillar acidic protein (GFAP) as well as a truncated form of the murine GFAP promoter. All three vectors resulted in predominantly glial expression; however we also observed eGFP expression in other cell-types such as oligodendrocytes, but never in neurons. In addition, robust and neuron-specific eGFP expression was observed using the minimal promoters for the neural protein BM88 and the neuronal nicotinic receptor ß2 (CHRNB2). In summary, we developed a set of AAV vectors designed for specific expression in cells of the CNS using minimal promoters to drive gene expression when the size of the therapeutic gene matters.

6.
Hum Gene Ther ; 24(12): 1007-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24070415

RESUMO

Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP. Macaques injected with either 1 × 10(13) or 5 × 10(13) vector genomes/kg of clinical-grade rAAV5-cohPBGD were monitored by standardized clinical parameters, and vector shedding was analyzed. Liver transduction efficacy, biodistribution, vector integration, and histopathology at day 30 postvector administration were determined. There was no evidence of acute toxicity, and no adverse effects were observed. The vector achieved efficient and homogenous hepatocellular transduction, reaching transgenic PBGD expression levels equivalent to 50% of the naturally expressed PBGD mRNA. No cellular immune response was detected against the human PBGD or AAV capsid proteins. Integration site analysis in transduced liver cells revealed an almost random integration pattern supporting the good safety profile of rAAV5-cohPBGD. Together, data obtained in nonhuman primates indicate that rAAV5-cohPBGD represents a safe therapy to correct the metabolic defect present in AIP patients.


Assuntos
Terapia Genética , Haploinsuficiência/genética , Hidroximetilbilano Sintase/genética , Porfiria Aguda Intermitente/terapia , Animais , Dependovirus , Vetores Genéticos , Hepatócitos/metabolismo , Humanos , Hidroximetilbilano Sintase/uso terapêutico , Macaca , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/patologia , Distribuição Tecidual/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA