Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Annu Rev Biochem ; 81: 451-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22663080

RESUMO

The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Peptidoglicano/biossíntese , Animais , Infecções Bacterianas/tratamento farmacológico , Parede Celular/química , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos
2.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228789

RESUMO

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
3.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006948

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Assuntos
Proteínas de Bactérias , Gluconobacter oxydans , Modelos Moleculares , Peptidoglicano , Peptidil Transferases , Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Software , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Biologia Computacional , Teste de Complementação Genética , Estrutura Terciária de Proteína
4.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
5.
J Bacteriol ; 205(4): e0047522, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37010281

RESUMO

Lytic transglycosylases cut peptidoglycan backbones, facilitating a variety of functions within bacteria, including cell division, pathogenesis, and insertion of macromolecular machinery into the cell envelope. Here, we identify a novel role of a secreted lytic transglycosylase associated with the predatory lifestyle of Bdellovibrio bacteriovorus strain HD100. During wild-type B. bacteriovorus prey invasion, the predator rounds up rod-shaped prey into spherical prey bdelloplasts, forming a spacious niche within which the predator grows. Deleting the MltA-like lytic transglycosylase Bd3285 still permitted predation but resulted in three different, invaded prey cell shapes: spheres, rods, and "dumbbells." Amino acid D321 within the catalytic C-terminal 3D domain of Bd3285 was essential for wild-type complementation. Microscopic analyses revealed that dumbbell-shaped bdelloplasts are derived from Escherichia coli prey undergoing cell division at the moment of Δbd3285 predator invasion. Prelabeling of E. coli prey peptidoglycan prior to predation with the fluorescent D-amino acid HADA showed that the dumbbell bdelloplasts invaded by B. bacteriovorus Δbd3285 contained a septum. Fluorescently tagged Bd3285, expressed in E. coli, localized to the septum of dividing cells. Our data indicate that B. bacteriovorus secretes the lytic transglycosylase Bd3285 into the E. coli periplasm during prey invasion to cleave the septum of dividing prey, facilitating prey cell occupation. IMPORTANCE Antimicrobial resistance is a serious and rapidly growing threat to global health. Bdellovibrio bacteriovorus can prey upon an extensive range of Gram-negative bacterial pathogens and thus has promising potential as a novel antibacterial therapeutic and is a source of antibacterial enzymes. Here, we elucidate the role of a unique secreted lytic transglycosylase from B. bacteriovorus which acts on the septal peptidoglycan of its prey. This improves our understanding of mechanisms that underpin bacterial predation.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Animais , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Comportamento Predatório , Aminoácidos/metabolismo
6.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
7.
EMBO J ; 38(17): e100772, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31355487

RESUMO

Bacterial usage of the cyclic dinucleotide c-di-GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c-di-GMP metabolism, particularly on regulatory mechanisms governing control of EAL c-di-GMP phosphodiesterases. Herein, we provide high-resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full-length cAMP-bound form reveals the sensory N-terminus to be a domain-swapped variant of the cNMP/CRP family, which in the cAMP-activated state holds the C-terminal EAL enzyme in a phosphodiesterase-active conformation. Using a truncation mutant, we trap both a half-occupied and inactive apo-form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c-di-GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c-di-GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing "action potentials" to be generated by each GGDEF protein to effect their specific functions.


Assuntos
Bdellovibrio bacteriovorus/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/química , Bdellovibrio bacteriovorus/genética , Sítios de Ligação , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Nucleotídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Conformação Proteica , Transdução de Sinais
8.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535060

RESUMO

The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bactérias Gram-Negativas
9.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686030

RESUMO

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Assuntos
Lisostafina/química , Peptidoglicano/química , Staphylococcus aureus/química , Bacteriólise/efeitos dos fármacos , Biofilmes , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Glicina/química , Ligantes , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Domínios de Homologia de src
10.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
11.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843574

RESUMO

Bdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.


Assuntos
Antibiose , Bdellovibrio bacteriovorus/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Bdellovibrio bacteriovorus/classificação , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/isolamento & purificação , Genoma Bacteriano , Filogenia , Microbiologia do Solo
12.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33106348

RESUMO

The asymmetric Gram-negative outer membrane (OM) is the first line of defense for bacteria against environmental insults and attack by antimicrobials. The key component of the OM is lipopolysaccharide, which is transported to the surface by the essential lipopolysaccharide transport (Lpt) system. Correct folding of the Lpt system component LptD is regulated by a periplasmic metalloprotease, BepA. Here, we present the crystal structure of BepA from Escherichia coli, solved to a resolution of 2.18 Å, in which the M48 protease active site is occluded by an active-site plug. Informed by our structure, we demonstrate that free movement of the active-site plug is essential for BepA function, suggesting that the protein is autoregulated by the active-site plug, which is conserved throughout the M48 metalloprotease family. Targeted mutagenesis of conserved residues reveals that the negative pocket and the tetratricopeptide repeat (TPR) cavity are required for function and degradation of the BAM complex component BamA under conditions of stress. Last, we show that loss of BepA causes disruption of OM lipid asymmetry, leading to surface exposed phospholipid.IMPORTANCE M48 metalloproteases are widely distributed in all domains of life. E. coli possesses four members of this family located in multiple cellular compartments. The functions of these proteases are not well understood. Recent investigations revealed that one family member, BepA, has an important role in the maturation of a central component of the lipopolysaccharide (LPS) biogenesis machinery. Here, we present the structure of BepA and the results of a structure-guided mutagenesis strategy, which reveal the key residues required for activity that inform how all M48 metalloproteases function.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Metaloproteases/química , Metaloproteases/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/isolamento & purificação , Metaloproteases/isolamento & purificação , Permeabilidade , Sensibilidade e Especificidade , Relação Estrutura-Atividade
14.
Nucleic Acids Res ; 44(10): 4947-56, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27016739

RESUMO

The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
15.
Mol Microbiol ; 102(6): 1120-1137, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671526

RESUMO

In silico analyses identified a Crp/Fnr family transcription factor (HcpR) in sulfate-reducing bacteria that controls expression of the hcp gene, which encodes the hybrid cluster protein and contributes to nitrosative stress responses. There is only one hcpR gene in the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, but two copies in Desulfovibrio desulfuricans 27774, which can use nitrate as an alternative electron acceptor to sulfate. Structures of the D. desulfuricans hcpR1, hcpR2 and hcp operons are reported. We present evidence that hcp expression is regulated by HcpR2, not by HcpR1, and that these two regulators differ in both their DNA-binding site specificity and their sensory domains. HcpR1 is predicted to be a b-type cytochrome. HcpR1 binds upstream of the hcpR1 operon and its synthesis is regulated coordinately with hcp in response to NO. In contrast, hcpR2 expression was not induced by nitrate, nitrite or NO. HcpR2 is an iron-sulfur protein that reacts with NO and O2 . We propose that HcpR1 and HcpR2 use different sensory mechanisms to regulate subsets of genes required for defense against NO-induced nitrosative stress, and that diversification of signal perception and DNA recognition by these two proteins is a product of D. desulfuricans adaptation to its particular environmental niche.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biologia Computacional , Simulação por Computador , Desulfovibrio desulfuricans/genética , Proteínas Ferro-Enxofre/metabolismo , Nitritos/metabolismo , Nitrosação/fisiologia , Óperon , Fatores de Transcrição/genética
16.
PLoS Genet ; 10(4): e1004253, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24721965

RESUMO

Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd) GTP-binding are conserved. Deletion of mglA(Bd) abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd) interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd) and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.


Assuntos
Proteínas de Bactérias/genética , Bdellovibrio/genética , GTP Fosfo-Hidrolases/genética , Proteínas Ativadoras de GTPase/genética , Myxococcus xanthus/genética , Proteínas ras/genética , Movimento Celular/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Óperon/genética
17.
Mol Microbiol ; 94(1): 1-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135390

RESUMO

The process of septation requires precise temporal and spatial organization of penicillin binding proteins (PBPs) and associated proteins for the deposition of new cell wall material. In most bacteria, the filamentous protein FtsZ organises PBPs into assemblies at the midcell which then constrict inwards as peptidoglycan is synthesised, eventually closing the septa. Tsui et al. (2014), through the use of fluorescent d-amino acids and high resolution microscopy, report that PBP2x of Streptococcus pneumoniae is directed to a discrete location within the septal aperture during the later stages of cell division. Once at this new site, PBP2x catalyses the de novo synthesis of peptidoglycan, which is imaged by the authors as a central 'spot', distinct from material made by other PBPs at the outer ring. This discovery, which represents a novel mode of cell wall assembly, was made in a directed capsular knockout of strain D39, thereby avoiding potential mechanistic complications in commonly used laboratory strain R6. These findings prompt not only a partial rethink of septum formation in S. pneumoniae, but consideration of the modes of PBP localization and the subtleties that can influence phenotypic study.


Assuntos
Divisão Celular , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Streptococcus pneumoniae/citologia
18.
Antimicrob Agents Chemother ; 59(12): 7396-404, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392513

RESUMO

ß-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for ß-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum ß-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct ß-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the ß-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections.


Assuntos
Ácido Clavulânico/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Penicilinas/farmacologia , Animais , Proteínas de Bactérias/genética , Interações Medicamentosas , Larva/efeitos dos fármacos , Larva/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Mutação , Resistência às Penicilinas/efeitos dos fármacos , Resistência às Penicilinas/genética , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
19.
PLoS Pathog ; 8(2): e1002524, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346754

RESUMO

Bdellovibrio are predatory bacteria that have evolved to invade virtually all gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound ß-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that "regular" PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication.


Assuntos
Bdellovibrio/enzimologia , Escherichia coli/ultraestrutura , Aptidão Genética/genética , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio/genética , Bdellovibrio/crescimento & desenvolvimento , Bdellovibrio/patogenicidade , Domínio Catalítico , Cristalização , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , Periplasma/microbiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Tempo
20.
Nat Commun ; 15(1): 3078, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594280

RESUMO

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Proteômica , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA