Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Microbiol ; 206(6): 276, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777923

RESUMO

Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.


Assuntos
Descontaminação , Luz , Descontaminação/métodos , Bactérias/efeitos da radiação , Bactérias/efeitos dos fármacos , Desinfecção/métodos , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos
2.
J Microsc ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808665

RESUMO

We propose a smartphone-based optical sectioning (SOS) microscope based on the HiLo technique, with a single smartphone replacing a high-cost illumination source and a camera sensor. We built our SOS with off-the-shelf optical, mechanical cage systems with 3D-printed adapters to seamlessly integrate the smartphone with the SOS main body. The liquid light guide can be integrated with the adapter, guiding the smartphone's LED light to the digital mirror device (DMD) with neglectable loss. We used an electrically tuneable lens (ETL) instead of a mechanical translation stage to realise low-cost axial scanning. The ETL was conjugated to the objective lens's back pupil plane (BPP) to construct a telecentric design by a 4f configuration to maintain the lateral magnification for different axial positions. SOS has a 571.5 µm telecentric scanning range and an 11.7 µm axial resolution. The broadband smartphone LED torch can effectively excite fluorescent polystyrene (PS) beads. We successfully used SOS for high-contrast fluorescent PS beads imaging with different wavelengths and optical sectioning imaging of multilayer fluorescent PS beads. To our knowledge, the proposed SOS is the first smartphone-based HiLo optical sectioning microscopy (£1965), which can save around £7035 compared with a traditional HiLo system (£9000). It is a powerful tool for biomedical research in resource-limited areas.

3.
Metabolomics ; 19(11): 88, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855954

RESUMO

INTRODUCTION: Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD: In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS: The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.


Assuntos
Preservação de Sangue , Metabolômica , Humanos , Preservação de Sangue/métodos , Espécies Reativas de Oxigênio/metabolismo , Plaquetas/metabolismo , Luz
4.
Chemistry ; 26(26): 5789-5793, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32059067

RESUMO

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) "peptoids" are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide "click" coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a "volumetric" spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Peptoides/química , Antibacterianos/farmacologia , Incrustação Biológica
5.
Microbiology (Reading) ; 162(9): 1680-1688, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27499074

RESUMO

Bacterial inactivation by 405 nm light is accredited to the photoexcitation of intracellular porphyrin molecules resulting in energy transfer and the generation of reactive oxygen species that impart cellular oxidative damage. The specific mechanism of cellular damage, however, is not fully understood. Previous work has suggested that destruction of nucleic acids may be responsible for inactivation; however, microscopic imaging has suggested membrane damage as a major constituent of cellular inactivation. This study investigates the membrane integrity of Escherichia coli and Staphylococcus aureus exposed to 405 nm light. Results indicated membrane damage to both species, with loss of salt and bile tolerance by S. aureus and E. coli, respectively, consistent with reduced membrane integrity. Increased nucleic acid release was also demonstrated in 405 nm light-exposed cells, with up to 50 % increase in DNA concentration into the extracellular media in the case of both organisms. SYTOX green fluorometric analysis, however, demonstrated contradictory results between the two test species. With E. coli, increasing permeation of SYTOX green was observed following increased exposure, with >500 % increase in fluorescence, whereas no increase was observed with S. aureus. Overall, this study has provided good evidence that 405 nm light exposure causes loss of bacterial membrane integrity in E. coli, but the results with S. aureus are more difficult to explain. Further work is required to gain greater understanding of the inactivation mechanism in different bacterial species, as there are likely to be other targets within the cell that are also impaired by the oxidative damage from photo-generated reactive oxygen species.


Assuntos
Ácidos e Sais Biliares/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Cloreto de Sódio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Corantes Fluorescentes/química , Luz , Compostos Orgânicos/química , Oxirredução , Staphylococcus aureus/química , Staphylococcus aureus/genética
6.
Anaerobe ; 37: 72-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26708703

RESUMO

The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70-225 mW/cm(2)) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm(2), however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/efeitos da radiação , Descontaminação , Desinfetantes/farmacologia , Compostos Clorados/farmacologia , Sinergismo Farmacológico , Luz , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Hipoclorito de Sódio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Triazinas/farmacologia
8.
Pathogens ; 13(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204298

RESUMO

Far-ultraviolet C light, with a wavelength of 200-230 nm, has demonstrated broad-spectrum germicidal efficacy. However, due to increased interest in its use as an alternative antimicrobial, further knowledge about its fundamental bactericidal efficacy is required. This study had two objectives. Firstly, it investigated experimentally the Far-UVC dose-response of common bacteria suspended at various cell densities in transparent buffer, ensuring no influence from photosensitive suspending media. Increasing doses of Far-UVC were delivered to Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus in PBS at 101, 102, 103, 105 and 107 CFU·mL-1, with surviving colony-forming units enumerated (n ≥ 3). Secondly, through a systematised literature review, this work sought to explore the impact of genus/species, Gram type, cell form, cell density and irradiance on dose-response. The screening of 483 publications was performed with 25 included in the study. Data for 30 species were collated, analysed and compared with the experimental results. Overall, Gram-positive species showed greater resilience to Far-UVC than Gram-negative; some inter-species and inter-genera differences in resilience were identified; endospores were more resilient than vegetative cells; the results suggested that inactivation efficiency may decrease as cell density increases; and no significant correlation was identified between irradiance and bactericidal dose effect. In conclusion, this study has shown Far-UVC light to be an effective decontamination tool against a vast range of bacterial vegetative cells and endospores.

9.
AMB Express ; 14(1): 66, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842656

RESUMO

Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.

10.
Microorganisms ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399684

RESUMO

Violet-blue light of 405 nm in the visible spectrum at a dose of 270 J/cm2 alone has been shown to be an effective microbicidal tool for inactivating several bacteria, HIV-1, and Trypanosoma cruzi in ex vivo plasma and platelets. Unlike chemical- and ultraviolet (UV)-based pathogen inactivation methods for plasma and platelet safety, 405 nm light is shown to be less toxic to host cells at light doses that are microbicidal. In this report, we evaluated the parasiticidal activity of a 405 nm light treatment on platelets spiked with the Leishmania donovani parasite. Following the light treatment, parasite viability was observed to be near zero in both low- and high-titer-spiked platelets relative to controls. Furthermore, to test the residual infectivity after inactivation in vivo, the light-treated low-titer L. donovani-spiked platelets were evaluated in an immunodeficient Rag2-/- mouse model and monitored for 9 weeks. The parasiticidal efficacy of 405 nm light was evident from the lack of a presence of parasites in the mice spleens. Parasiticidal activity was confirmed to be mediated through 405 nm light-induced reactive oxygen species (ROS), as quantitatively measured by a 2',7'-Dichlorodihydrofluorescein diacetate (H2DCFDA)-based assay. Overall, these results confirm the complete inactivation of L. donovani spiked in ex vivo platelets by 405 nm light treatment and exemplify the utility of the Rag2-/- mouse infection model for the preclinical validation of the parasiticidal efficacy of 405 nm light and this light-based technology as a potential PRT for ex vivo platelets.

11.
J Photochem Photobiol B ; 255: 112922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677260

RESUMO

Chemical and UV light-based pathogen reduction technologies are currently in use for human platelet concentrates (PCs) to enhance safety from transfusion-transmitted infections. Relative to UV light, 405 nm violet-blue light in the visible spectrum is known to be less harmful. Hence, in this report for the first time, we have assessed the global hemostasis activity of PCs stored in plasma and the activities of six plasma coagulation factors (CFs) as a measure of in vitro hemostatic activity following exposure to the microbicidal 405 nm light. Apheresis PC samples collected from each screened human donor (n = 22) were used for testing of PCs and platelet poor plasma (PPP). Both PCs and PPPs were treated for 5 h with 405 nm light to achieve a previously established microbicidal light dose of 270 J/cm2. Activated partial thromboplastin time and prothrombin time-based potency assays using a coagulation analyzer and hemostatic capacity via Thromboelastography were analyzed. Thromboelastography analysis of the light-treated PCs and plasma present in the PCs showed little difference between the treated and untreated samples. Further, plasma present in the PCs during the light treatment demonstrated a better stability in potency assays for several coagulation factors compared to the plasma alone prepared from PCs first and subjected to the light treatment separately. Overall, PCs stored in plasma treated with 405 nm violet-blue light retain activity for hemostasis.


Assuntos
Plaquetas , Hemostasia , Raios Ultravioleta , Humanos , Plaquetas/efeitos da radiação , Hemostasia/efeitos da radiação , Tromboelastografia , Luz , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Coagulação Sanguínea/efeitos da radiação , Coagulação Sanguínea/efeitos dos fármacos , Fatores de Coagulação Sanguínea/metabolismo
12.
Photochem Photobiol ; 99(6): 1493-1500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872097

RESUMO

The highly transmittable nature of SARS-CoV-2 has increased the necessity for novel strategies to safely decontaminate public areas. This study investigates the efficacy of a low irradiance 405-nm light environmental decontamination system for the inactivation of bacteriophage phi6 as a surrogate for SARS-CoV-2. Bacteriophage phi6 was exposed to increasing doses of low irradiance (~0.5 mW cm-2 ) 405-nm light while suspended in SM buffer and artificial human saliva at low (~103-4 PFU mL-1 ) and high (~107-8 PFU mL-1 ) seeding densities, to determine system efficacy for SARS-CoV-2 inactivation and establish the influence of biologically relevant suspension media on viral susceptibility. Complete/near-complete (≥99.4%) inactivation was demonstrated in all cases, with significantly enhanced reductions observed in biologically relevant media (P < 0.05). Doses of 43.2 and 172.8 J cm-2 were required to achieve ~3 log10 reductions at low density, and 97.2 and 259.2 J cm-2 achieved ~6 log10 reductions at high density, in saliva and SM buffer, respectively: 2.6-4 times less dose was required when suspended in saliva compared to SM buffer. Comparative exposure to higher irradiance (~50 mW cm-2 ) 405-nm light indicated that, on a per unit dose basis, 0.5 mW cm-2 treatments were capable of achieving up to 5.8 greater log10 reductions with up to 28-fold greater germicidal efficiency than that of 50 mW cm-2 treatments. These findings establish the efficacy of low irradiance 405-nm light systems for inactivation of a SARS-CoV-2 surrogate and demonstrate the significant enhancement in susceptibility when suspended in saliva, which is a major vector in COVID-19 transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Descontaminação
13.
Health Technol (Berl) ; : 1-15, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37363345

RESUMO

Purpose: Lighting systems which use visible light blended with antimicrobial 405-nm violet-blue light have recently been developed for safe continuous decontamination of occupied healthcare environments. This paper characterises the optical output and antibacterial efficacy of a low irradiance 405-nm light system designed for environmental decontamination applications, under controlled laboratory conditions. Methods: In the current study, the irradiance output of a ceiling-mounted 405-nm light source was profiled within a 3×3×2 m (18 m3) test area; with values ranging from 0.001-2.016 mWcm-2. To evaluate antibacterial efficacy of the light source for environmental surface decontamination, irradiance levels within this range (0.021-1 mWcm-2) at various angular (Δ Ï´=0-51.3) and linear (∆s=1.6-2.56 m) displacements from the source were used to generate inactivation kinetics, using the model organism, Staphylococcus aureus. Additionally, twelve bacterial species were surface-seeded and light-exposed at a fixed displacement below the source (1.5 m; 0.5 mWcm-2) to demonstrate broad-spectrum efficacy at heights typical of high touch surfaces within occupied settings. Results: Results demonstrate that significant (P≤0.05) inactivation was successfully achieved at all irradiance values investigated, with spatial positioning from the source affecting inactivation, with greater times required for inactivation as irradiance decreased. Complete/near-complete (≥93.28%) inactivation of all bacteria was achieved following exposure to 0.5 mWcm-2 within exposure times realistic of those utilised practically for whole-room decontamination (2-16 h). Conclusion: This study provides fundamental evidence of the efficacy, and energy efficiency, of low irradiance 405-nm light for bacterial inactivation within a controlled laboratory setting, further justifying its benefits for practical infection control applications.

14.
J Photochem Photobiol B ; 241: 112672, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871490

RESUMO

Continued efforts to reduce the risk of transfusion-transmitted infections (TTIs) through blood and blood components led to the development of ultraviolet (UV) light irradiation technologies known as pathogen reduction technologies (PRT) to enhance blood safety. While these PRTs demonstrate germicidal efficiency, it is generally accepted that these photoinactivation techniques have limitations as they employ treatment conditions shown to compromise the quality of the blood components. During ex vivo storage, platelets having mitochondria for energy production suffer most from the consequences of UV irradiation. Recently, application of visible violet-blue light in the 400-470 nm wavelength range has been identified as a relatively more compatible alternative to UV light. Hence, in this report, we evaluated 405 nm light-treated platelets to assess alterations in energy utilization by measuring different mitochondrial bioenergetic parameters, glycolytic flux, and reactive oxygen species (ROS). Furthermore, we employed untargeted data-independent acquisition mass spectrometry to characterize platelet proteomic differences in protein regulation after the light treatment. Overall, our analyses demonstrate that ex vivo treatment of human platelets with antimicrobial 405 nm violet-blue light leads to mitochondrial metabolic reprogramming to survive the treatment, and alters a fraction of platelet proteome.


Assuntos
Anti-Infecciosos , Plaquetas , Humanos , Plaquetas/efeitos da radiação , Proteoma , Proteômica/métodos , Preservação de Sangue/métodos , Raios Ultravioleta , Anti-Infecciosos/metabolismo , Mitocôndrias/metabolismo
15.
J Mater Sci Mater Med ; 23(2): 507-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22205133

RESUMO

Pulsed electric field (PEF) treatment was examined as a potential decontamination method for tissue engineering biomatrices by determining the susceptibility of a range of microorganisms whilst within a collagen gel. High intensity pulsed electric fields were applied to collagen gel biomatrices containing either Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Candida albicans, Saccharomyces cerevisiae or the spores of Aspergillus niger. The results established varying degrees of microbial PEF susceptibility. When high initial cell densities (10(6)-10(7) CFU ml(-1)) were PEF treated with 100 pulses at 45 kV cm(-1), the greatest log reduction was achieved with S. cerevisiae (~6.5 log(10) CFU ml(-1)) and the lowest reduction achieved with S. epidermidis (~0.5 log(10) CFU ml(-1)). The results demonstrate that inactivation is influenced by the intrinsic properties of the microorganism treated. Further investigations are required to optimise the microbial inactivation kinetics associated with PEF treatment of collagen gel biomatrices.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Viabilidade Microbiana , Animais , Candida albicans/metabolismo , Colágeno/metabolismo , Eletricidade , Eletroquímica/métodos , Desenho de Equipamento , Escherichia coli/metabolismo , Géis/química , Cinética , Pseudomonas aeruginosa/metabolismo , Ratos , Saccharomyces cerevisiae/metabolismo , Staphylococcus epidermidis/metabolismo , Células-Tronco
16.
ScientificWorldJournal ; 2012: 137805, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566760

RESUMO

The bactericidal effect of 405 nm light was investigated on taxonomically diverse bacterial pathogens from the genera Salmonella, Shigella, Escherichia, Listeria, and Mycobacterium. High-intensity 405 nm light, generated from an array of 405-nm light-emitting diodes (LEDs), was used to inactivate bacteria in liquid suspension and on exposed surfaces. L. monocytogenes was most readily inactivated in suspension, whereas S. enterica was most resistant. In surface exposure tests, L. monocytogenes was more susceptible than Gram-negative enteric bacteria to 405 nm light when exposed on an agar surface but interestingly less susceptible than S. enterica after drying onto PVC and acrylic surfaces. The study findings, that 405 nm light inactivates diverse types of bacteria in liquids and on surfaces, in addition to the safety advantages of this visible (non-UV wavelength) light, indicate the potential of this technology for a range of decontamination applications.


Assuntos
Escherichia coli/efeitos da radiação , Luz , Listeria monocytogenes/efeitos da radiação , Mycobacterium tuberculosis/efeitos da radiação , Salmonella enterica/efeitos da radiação , Shigella sonnei/efeitos da radiação , Ágar/química , Antibacterianos/farmacologia , Carga Bacteriana/efeitos da radiação , Desinfetantes/farmacologia , Desinfecção/métodos , Escherichia coli/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Cloreto de Polivinila/química , Salmonella enterica/crescimento & desenvolvimento , Shigella sonnei/crescimento & desenvolvimento
17.
Pathogens ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890023

RESUMO

Despite significant advances in ensuring the safety of the blood supply, there is continued risk of transfusion transmitted infections (TTIs) from newly emerging or re-emerging infections. Globally, several pathogen reduction technologies (PRTs) for blood safety have been in development as an alternative to traditional treatment methods. Despite broad spectrum antimicrobial efficacy, some of the approved ultraviolet (UV) light-based PRTs, understandably due to UV light-associated toxicities, fall short in preserving the full functional spectrum of the treated blood components. As a safer alternative to the UV-based microbicidal technologies, investigations into the use of violet-blue light in the region of 405 nm have been on the rise as these wavelengths do not impair the treated product at doses that demonstrate microbicidal activity. Recently, we have demonstrated that a 405 nm violet-blue light dose of 270 J/cm2 was sufficient for reducing bacteria and the parasite in plasma and platelets suspended in plasma while preserving the quality of the treated blood product stored for transfusion. Drawn from the previous experience, here we evaluated the virucidal potential of 405 nm violet-blue light dose of 270 J/cm2 on an important blood-borne enveloped virus, the human immunodeficiency virus 1 (HIV-1), in human plasma. Both test plasma (HIV-1 spiked and treated with various doses of 405 nm light) and control plasma (HIV-1 spiked, but not treated with the light) samples were cultured with HIV-1 permissive H9 cell line for up to 21 days to estimate the viral titers. Quantitative HIV-1 p24 antigen (HIV-1 p24) levels reflective of HIV-1 titers were measured for each light dose to assess virus infectivity. Our results demonstrate that a 405 nm light dose of 270 J/cm2 is also capable of 4-5 log HIV-1 reduction in plasma under the conditions tested. Overall, this study provides the first proof-of-concept that 405 nm violet-blue light successfully inactivates HIV-1 present in human plasma, thereby demonstrating its potential towards being an effective PRT for this blood component safety.

18.
Photochem Photobiol ; 98(2): 504-512, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935147

RESUMO

In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma. Human plasma seeded with bacteria at a range of densities (101 -103 , 104 -106 , 107 -108 CFU mL-1 ) was exposed to 360 J cm-2 405-nm light (1 h at 0.1 W cm-2 ), with this fixed dose selected based on the initial analysis of inactivation kinetics. One-dimensional protein mobility analysis and measurement of advanced oxidation protein products (AOPP) was conducted to evaluate compatibility of the antimicrobial dose with plasma proteins and, identify upper levels at which protein degradation can be detected. Broad-spectrum antibacterial efficacy was observed with a fixed treatment of 360 J cm-2 , with 98.9-100% inactivation achieved across all seeding densities for all organisms, except E. coli, which achieved 95.1-100% inactivation. At this dose (360 J cm-2 ), no signs of protein degradation occurred. Overall, 405-nm light shows promise for broad-spectrum bacterial inactivation in blood plasma, while preserving plasma protein integrity.


Assuntos
Escherichia coli , Luz , Antibacterianos/farmacologia , Bactérias , Proteínas Sanguíneas , Humanos , Plasma
19.
Foodborne Pathog Dis ; 7(10): 1211-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20590423

RESUMO

Although considerable research has been carried out on a range of environmental factors that impact on the survival of Campylobacter jejuni, there is limited information on the effects of violet/blue light on this pathogen. This investigation was carried out to determine the effects of high-intensity 405-nm light on C. jejuni and to compare this with the effects on two other important Gram-negative enteric pathogens, Salmonella enteritidis and Escherichia coli O157:H7. High-intensity 405-nm light generated from an array of 405-nm light-emitting diodes was used to inactivate the test bacteria. The results demonstrated that while all three tested species were susceptible to 405-nm light inactivation, C. jejuni was by far the most sensitive organism, requiring a total dose of 18 J cm⁻² of 405-nm light to achieve a 5-log10 reduction. This study has established that C. jejuni is particularly susceptible to violet/blue light at a wavelength of 405 nm. This finding, coupled with the safety-in-use advantages of this visible (non-ultraviolet wavelength) light, suggests that high-intensity 405-nm light may have applications for control of C. jejuni contamination levels in situations where this type of illumination can be effectively applied.


Assuntos
Campylobacter jejuni/efeitos da radiação , Luz , Infecções por Campylobacter/prevenção & controle , Escherichia coli O157/efeitos da radiação , Microbiologia de Alimentos , Salmonella enteritidis/efeitos da radiação
20.
Front Med (Lausanne) ; 7: 617373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330577

RESUMO

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm-2 for 5 h, equivalent to 270 Jcm-2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA