Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Reprod Dev ; 83(2): 149-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26660942

RESUMO

Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , RNA Helicases DEAD-box/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Tretinoína/farmacologia , Animais , Bovinos , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos
2.
Adv Exp Med Biol ; 786: 5-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696349

RESUMO

The molecular and phenotypic irreversibility of mammalian cell differentiation was a fundamental principle of developmental biology at least until the 1980s, despite numerous reports dating back to the 1950s of the induction of pluripotency in amphibian cells by nuclear transfer (NT). Landmark reports in the 1980s and 1990s in sheep progressively challenged this dogmatic assumption; firstly, embryonic development of reconstructed embryos comprising whole (donor) blastomeres fused to enucleated oocytes, and famously, the cloning of Dolly from a terminally differentiated cell. Thus, the intrinsic ability of oocyte-derived factors to reverse the differentiated phenotype was confirmed. The concomitant elucidation of methods for human embryonic stem cell isolation and cultivation presented opportunities for therapeutic cell replacement strategies, particularly through NT of patient nuclei to enucleated oocytes for subsequent isolation of patient-specific (autologous), pluripotent cells from the resulting blastocysts. Associated logistical limitations of working with human oocytes, in addition to ethical and moral objections prompted exploration of alternative approaches to generate autologous stem cells for therapy, utilizing the full repertoire of factors characteristic of pluripotency, primarily through cell fusion and use of pluripotent cell extracts. Stunningly, in 2006, Japanese scientists described somatic cell reprogramming through delivery of four key factors (identified through a deductive approach from 24 candidate genes). Although less efficient than previous approaches, much of current stem cell research adopts this focused approach to cell reprogramming and (autologous) cell therapy. This chapter is a quasi-historical commentary of the various aforementioned approaches for the induction of pluripotency in lineage-committed cells, and introduces transcriptional and epigenetic changes occurring during reprogramming.


Assuntos
Blastocisto/citologia , Reprogramação Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Anfíbios , Animais , Blastocisto/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/genética , Fusão Celular , Clonagem de Organismos/história , Desenvolvimento Embrionário , História do Século XX , História do Século XXI , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Transferência Nuclear/história , Oócitos/citologia , Oócitos/metabolismo , Ovinos , Transcrição Gênica
3.
Genome Biol ; 24(1): 59, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Animais , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Methods Mol Biol ; 2495: 91-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696029

RESUMO

The ability of modifying the genome of multiple species, precisely and without or minimal off-targeted effects, have opened numerous opportunities for the biotechnology industry. In this chapter, we describe an easy to establish, robust, and practical pipeline that can be used to generate immortalized cell lines, from different tissues, to capture cell linage context and validate the tools required for genome editing and genetic modification. This pipeline serves as a reference for similar approaches for gene interrogation in other species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Linhagem Celular , Genoma
5.
Stem Cells Int ; 2016: 5127984, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880968

RESUMO

Pluripotent stem cells (PSCs) fall in two states, one highly undifferentiated, the naïve state, and the primed state, characterized by the inability to contribute to germinal lineage. Several reports have demonstrated that these states can be modified by changes to the cell culture conditions. With the advent of nuclear reprogramming, bovine induced pluripotent stem cells (biPSCs) have been generated. These cells represent examples of a transient-intermediate state of pluripotency with remarkable characteristics and biotechnological potential. Herein, we generated and characterized biPSC. Next, we evaluated different culture conditions for the ability to affect the expression of the set of core pluripotent transcription factors in biPSC. It was found that the use of 6-bromoindirubin-3-oxime and Sc1 inhibitors alone or in combination with 5-AzaC induced significantly higher levels of expression of endogenous REX1, OCT4, NANOG, and SOX2. Furthermore, LIF increased the levels of expression of OCT4 and REX1, compared with those cultured with LIF + bFGF. By contrast, bFGF decreased the levels of expression for both REX1 and OCT4. These results demonstrate that the biPSC gene expression profile is malleable by modification of the cell culture conditions well after nuclear reprogramming, and the culture conditions may determine their differentiation potential.

6.
Methods Mol Biol ; 1330: 57-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621589

RESUMO

Nuclear reprogramming technologies in general and induced pluripotent stem cells (iPSCs) in particular have opened the door to a vast number of practical applications in regenerative medicine and biotechnology. It also represents a possible alternative to the still evasive achievement of embryonic stem cells (ESCs) isolation from refractory species such as Bos. taurus. Herein, we described a protocol for bovine iPSCs (biPSCs) generation and characterization. The protocol is based on the overexpression of the exogenous transcription factors NANOG, OCT4, SOX2, KLF4 and c-MYC, using a pantropic retroviral system.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Bovinos , Técnicas de Cultura de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Corpos Embrioides , Feminino , Vetores Genéticos/genética , Xenoenxertos , Fator 4 Semelhante a Kruppel , Camundongos , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratoma/genética , Teratoma/patologia , Transdução Genética , Transgenes
7.
Methods Mol Biol ; 1330: 253-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621602

RESUMO

Interest is increasing in transcription activator-like effector nucleases (TALENs) as a tool to introduce targeted double-strand breaks into the large genomes of human and animal cell lines. The produced DNA lesions stimulate DNA repair pathways, error-prone but dominant non-homologous end joining (NHEJ) and accurate but less occurring homology-directed repair (HDR), and as a result targeted genes can be modified. Here, we describe a modified Golden-Gate cloning method for generating TALENs and also details for targeting genes in mouse embryonic stem cells. The protocol described here can be used for modifying the genome of a broad range of pluripotent cell lines.


Assuntos
Endonucleases/metabolismo , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma , Animais , Sítios de Ligação , Clonagem Molecular , Biologia Computacional/métodos , Células-Tronco Embrionárias , Camundongos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Ligação Proteica , Análise de Sequência de DNA , Transfecção
8.
Stem Cells Int ; 2012: 541014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619682

RESUMO

Exogenous expression of Oct4, Sox2, Klf4, and cMyc forces mammalian somatic cells to adopt molecular and phenotypic characteristics of embryonic stem cells, commencing with the required suppression of lineage-associated genes (e.g., Thy1 in mouse). Although omitting cMyc from the reprogramming cocktail minimizes risks of uncontrolled proliferation, its exclusion results in fold reductions in reprogramming efficiency. Thus, the feasibility of substituting cMyc transgene with (non-integrative) recombinant "pTAT-mcMyc" protein delivery was assessed, without compromising reprogramming efficiency or the pluripotent phenotype. Purification and delivery of semisoluble/particulate pTAT-mcMyc maintained Oct4-GFP(+) colony formation (i.e., reprogramming efficiency) whilst supporting pluripotency by various criteria. Differential repression of Thy1 by pTAT-mcMyc ± Oct4, Sox2, and Klf4 (OSK) suggested differential (and non-additive) mechanisms of repression. Extending these findings, attempts to enhance reprogramming efficiency through a staggered approach (prerepression of Thy1) failed to improve reprogramming efficiency. We consider protein delivery a useful tool to decipher temporal/molecular events characterizing somatic cell reprogramming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA