Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Biol Chem ; 299(7): 104905, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302553

RESUMO

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Assuntos
Acetilgalactosamina , Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Angiopatia Amiloide Cerebral , Glicosilação , Animais , Camundongos , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Células Endoteliais/metabolismo , Transporte Proteico , Neurônios/metabolismo , Complexo de Golgi/metabolismo , Acetilgalactosamina/metabolismo
2.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38598324

RESUMO

Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.


Assuntos
Envelhecimento , Camundongos Endogâmicos C57BL , Nucleotídeos , Animais , Camundongos , Masculino , Envelhecimento/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/análise , Rim/metabolismo , Rim/química , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Espectrometria de Massas em Tandem , Fígado/metabolismo , Fígado/química , Encéfalo/metabolismo
3.
Genes Cells ; 26(7): 485-494, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893702

RESUMO

Defects in the O-mannosyl glycan of α-dystroglycan (α-DG) are associated with α-dystroglycanopathy, a group of congenital muscular dystrophies. While α-DG has many O-mannosylation sites, only the specific positions can be modified with the functional O-mannosyl glycan, namely, core M3-type glycan. POMGNT2 is a glycosyltransferase which adds ß1,4-linked GlcNAc to the O-mannose (Man) residue to acquire core M3-type glycan. Although it is assumed that POMGNT2 extends the specific O-Man residues around particular amino acid sequences, the details are not well understood. Here, we determined a series of crystal structures of POMGNT2 with and without the acceptor O-mannosyl peptides and identified the critical interactions between POMGNT2 and the acceptor peptide. POMGNT2 has an N-terminal catalytic domain and a C-terminal fibronectin type III (FnIII) domain and forms a dimer. The acceptor peptide is sandwiched between the two protomers. The catalytic domain of one protomer recognizes the O-mannosylation site (TPT motif), and the FnIII domain of the other protomer recognizes the C-terminal region of the peptide. Structure-based mutational studies confirmed that amino acid residues of the catalytic domain interacting with mannose or the TPT motif are essential for POMGNT2 enzymatic activity. In addition, the FnIII domain is also essential for the activity and it interacts with the peptide mainly by hydrophobic interaction. Our study provides the first atomic-resolution insights into specific acceptor recognition by the FnIII domain of POMGNT2. The catalytic mechanism of POMGNT2 is proposed based on the structure.


Assuntos
Domínio Catalítico , Glicosiltransferases/química , Distroglicanas/metabolismo , Glicosiltransferases/metabolismo , Humanos , Manose/metabolismo , Ligação Proteica
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361885

RESUMO

Glycans are involved in many fundamental cellular processes such as growth, differentiation, and morphogenesis. However, their broad structural diversity makes analysis difficult. Glycomics via mass spectrometry has focused on the composition of glycans, but informatics analysis has not kept pace with the development of instrumentation and measurement techniques. We developed Toolbox Accelerating Glycomics (TAG), in which glycans can be added manually to the glycan list that can be freely designed with labels and sialic acid modifications, and fast processing is possible. In the present work, we improved TAG for large-scale analysis such as cohort analysis of serum samples. The sialic acid linkage-specific alkylamidation (SALSA) method converts differences in linkages such as α2,3- and α2,6-linkages of sialic acids into differences in mass. Glycans modified by SALSA and several structures discovered in recent years were added to the glycan list. A routine to generate calibration curves has been implemented to explore quantitation. These improvements are based on redefinitions of residues and glycans in the TAG List to incorporate information on glycans that could not be attributed because it was not assumed in the previous version of TAG. These functions were verified through analysis of purchased sera and 74 spectra with linearity at the level of R2 > 0.8 with 81 estimated glycan structures obtained including some candidate of rare glycans such as those with the N,N'-diacetyllactosediamine structure, suggesting they can be applied to large-scale analyses.


Assuntos
Glicômica , Ácido N-Acetilneuramínico , Humanos , Glicômica/métodos , Polissacarídeos/química , Ácidos Siálicos/química , Espectrometria de Massas
5.
Molecules ; 26(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771084

RESUMO

Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.


Assuntos
Glicerofosfatos/metabolismo , Polissacarídeos/biossíntese , Animais , Vias Biossintéticas , Distroglicanas/química , Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Glicerofosfatos/química , Glicosilação , Humanos , Laminina/metabolismo , Mamíferos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Polissacarídeos/química , Ligação Proteica , Relação Estrutura-Atividade
6.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32881480

RESUMO

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

7.
J Biol Chem ; 293(31): 12186-12198, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29884773

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface laminin receptor. Defects in the O-mannosyl glycan of an α-DG with laminin-binding activity can cause α-dystroglycanopathy, a group of congenital muscular dystrophies. In the biosynthetic pathway of functional O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP), whose mutated genes underlie α-dystroglycanopathy, sequentially transfer ribitol phosphate (RboP) from CDP-Rbo to form a tandem RboP unit (RboP-RboP) required for the synthesis of the laminin-binding epitope on O-mannosyl glycan. Both RboP- and glycerol phosphate (GroP)-substituted glycoforms have recently been detected in recombinant α-DG. However, it is unclear how GroP is transferred to the O-mannosyl glycan or whether GroP substitution affects the synthesis of the O-mannosyl glycan. Here, we report that, in addition to having RboP transfer activity, FKTN and FKRP can transfer GroP to O-mannosyl glycans by using CDP-glycerol (CDP-Gro) as a donor substrate. Kinetic experiments indicated that CDP-Gro is a less efficient donor substrate for FKTN than is CDP-Rbo. We also show that the GroP-substituted glycoform synthesized by FKTN does not serve as an acceptor substrate for FKRP and that therefore further elongation of the outer glycan chain cannot occur with this glycoform. Finally, CDP-Gro inhibited the RboP transfer activities of both FKTN and FKRP. These results suggest that CDP-Gro inhibits the synthesis of the functional O-mannosyl glycan of α-DG by preventing further elongation of the glycan chain. This is the first report of GroP transferases in mammals.


Assuntos
Distroglicanas/metabolismo , Glicerol/metabolismo , Distrofias Musculares/metabolismo , Polissacarídeos/metabolismo , Glicerol/química , Glicosilação , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Pentosefosfatos/metabolismo , Pentosiltransferases , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(33): 9280-5, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27493216

RESUMO

The dystrophin glycoprotein complex, which connects the cell membrane to the basement membrane, is essential for a variety of biological events, including maintenance of muscle integrity. An O-mannose-type GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man structure of α-dystroglycan (α-DG), a subunit of the complex that is anchored to the cell membrane, interacts directly with laminin in the basement membrane. Reduced glycosylation of α-DG is linked to some types of inherited muscular dystrophy; consistent with this relationship, many disease-related mutations have been detected in genes involved in O-mannosyl glycan synthesis. Defects in protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), a glycosyltransferase that participates in the formation of GlcNAc-ß1,2-Man glycan, are causally related to muscle-eye-brain disease (MEB), a congenital muscular dystrophy, although the role of POMGnT1 in postphosphoryl modification of GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan remains elusive. Our crystal structures of POMGnT1 agreed with our previous results showing that the catalytic domain recognizes substrate O-mannosylated proteins via hydrophobic interactions with little sequence specificity. Unexpectedly, we found that the stem domain recognizes the ß-linked GlcNAc of O-mannosyl glycan, an enzymatic product of POMGnT1. This interaction may recruit POMGnT1 to a specific site of α-DG to promote GlcNAc-ß1,2-Man clustering and also may recruit other enzymes that interact with POMGnT1, e.g., fukutin, which is required for further modification of the GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan. On the basis of our findings, we propose a mechanism for the deficiency in postphosphoryl modification of the glycan observed in POMGnT1-KO mice and MEB patients.


Assuntos
Distroglicanas/química , N-Acetilglucosaminiltransferases/química , Sítios de Ligação , Cristalização , Glicosilação , Humanos , Manose/química
9.
Hum Mol Genet ; 25(8): 1479-88, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908613

RESUMO

A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs. Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe developmental defects involving skeleton muscle, brain and eye, such as the muscle-eye-brain disease (MIM no. 253280). However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study, we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only essential for early organ development, but also important for maintaining survival and function of the highly specialized retinal cells at later stages.


Assuntos
Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Retinose Pigmentar/patologia , Análise de Sequência de DNA/métodos , Adulto , Idoso , Animais , Células Cultivadas , Exoma , Feminino , Genes Recessivos , Predisposição Genética para Doença , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Células Fotorreceptoras de Vertebrados/metabolismo , Retinose Pigmentar/genética
10.
Biochem Biophys Res Commun ; 497(4): 1025-1030, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29477842

RESUMO

Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.


Assuntos
Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Proteínas/metabolismo , Distroglicanas , Células HEK293 , Humanos , Complexos Multiproteicos , Pentosiltransferases , Polissacarídeos/biossíntese , Ribitol/metabolismo
11.
Genes Cells ; 22(4): 348-359, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251761

RESUMO

Orchestration of the multiple enzymes engaged in O-mannose glycan synthesis provides a matriglycan on α-dystroglycan (α-DG) which attracts extracellular matrix (ECM) proteins such as laminin. Aberrant O-mannosylation of α-DG leads to severe congenital muscular dystrophies due to detachment of ECM proteins from the basal membrane. Phosphorylation at C6-position of O-mannose catalyzed by protein O-mannosyl kinase (POMK) is a crucial step in the biosynthetic pathway of O-mannose glycan. Several mis-sense mutations of the POMK catalytic domain are known to cause a severe congenital muscular dystrophy, Walker-Warburg syndrome. Due to the low sequence similarity with other typical kinases, structure-activity relationships of this enzyme remain unclear. Here, we report the crystal structures of the POMK catalytic domain in the absence and presence of an ATP analogue and O-mannosylated glycopeptide. The POMK catalytic domain shows a typical protein kinase fold consisting of N- and C-lobes. Mannose residue binds to POMK mainly via the hydroxyl group at C2-position, differentiating from other monosaccharide residues. Intriguingly, the two amino acid residues K92 and D228, interacting with the triphosphate group of ATP, are donated from atypical positions in the primary structure. Mutations in this protein causing muscular dystrophies can now be rationalized.


Assuntos
Proteínas Quinases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Distroglicanas/química , Humanos , Camundongos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
12.
J Biol Chem ; 291(47): 24618-24627, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27733679

RESUMO

A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAß1-3Xylα1]n-3GlcAß1-4Xyl-Rbo5P-1Rbo5P-3GalNAcß1-3GlcNAcß1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear. TMEM5 is a gene product responsible for α-dystroglycanopathy and was reported as a potential enzyme involved in this linkage formation, although the experimental evidence is still incomplete. Here, we report that TMEM5 is a xylosyltransferase that forms the Xylß1-4Rbo5P linkage on O-mannosyl glycan. The anomeric configuration and linkage position of the product (ß1,4 linkage) was determined by NMR analysis. The introduction of two missense mutations in TMEM5 found in α-dystroglycanopathy patients impaired xylosyltransferase activity. Furthermore, the disruption of the TMEM5 gene by CRISPR/Cas9 abrogated the elongation of the (-3GlcAß1-3Xylα1-) unit on O-mannosyl glycan. Based on these results, we concluded that TMEM5 acts as a UDP-d-xylose:ribitol-5-phosphate ß1,4-xylosyltransferase in the biosynthetic pathway of O-mannosyl glycan.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Linhagem Celular , Distroglicanas/química , Distroglicanas/genética , Glicosilação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Pentosiltransferases , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
13.
Biochim Biophys Acta Gen Subj ; 1861(10): 2462-2472, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711406

RESUMO

BACKGROUND: O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW: This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS: Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE: O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Distroglicanas/química , Distrofias Musculares/metabolismo , N-Acetilglucosaminiltransferases/química , Pentosefosfatos/metabolismo , Processamento de Proteína Pós-Traducional , Síndrome de Walker-Warburg/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sequência de Carboidratos , Distroglicanas/genética , Distroglicanas/metabolismo , Glicosilação , Humanos , Manose/química , Manose/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Pentosefosfatos/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia
14.
J Hum Genet ; 61(8): 753-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27193224

RESUMO

Protein O-mannosyltransferase 1 (POMT1) is a glycosyltransferase involved in α-dystroglycan glycosylation. POMT1 mutations cause a wide spectrum of clinical conditions from Walker-Warburg syndrome (WWS), which involves muscle, eye and brain abnormalities, to mild forms of limb-girdle muscular dystrophy with mental retardation. We aimed to elucidate the impact of different POMT1 mutations on the clinical phenotype. We report five Chinese patients with POMT1 mutations: one had a typical clinical manifestation of WWS, and the other four were diagnosed with congenital muscular dystrophy with mental retardation of varying severity. We analyzed the influence of the POMT1 mutations on POMT activity by assaying the patients' muscles and cultured skin fibroblasts. We demonstrated different levels of decreased POMT activity that correlated highly with decreased α-dystroglycan glycosylation. Our results suggest that POMT activity is inversely proportional to clinical severity, and demonstrate that skin fibroblasts can be used for differential diagnosis of patients with α-dystroglycanopathies. We have provided clinical, histological, enzymatic and genetic evidence of POMT1 involvement in five unrelated Chinese patients.


Assuntos
Estudos de Associação Genética , Genótipo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Mutação , Fenótipo , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Ecocardiografia , Ativação Enzimática , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico , Distrofias Musculares/enzimologia , Distrofias Musculares/genética , Gravidez , Diagnóstico Pré-Natal
15.
Glycobiology ; 25(4): 376-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25361541

RESUMO

Glycosylation is a major protein modification. Although proteins are glycosylated/further modulated by several glycosyltransferases during trafficking from the endoplasmic reticulum to the Golgi apparatus, a certain glycan epitope has only been detected on a limited number of proteins. Of these glycan epitopes, Lewis X is highly expressed in the early stage of a developing brain and plays important roles in cell-cell interaction. The Lewis X epitope is comprised of a trisaccharide (Galß1-4 (Fucα1-3) GlcNAc), and a key enzyme for the expression of this epitope is α1,3-fucosyltransferase 9. However, the scaffolding glycan structure responsible for the formation of the Lewis X epitope as well as its major carrier protein has not been fully characterized in the nervous system. Here we showed that the Lewis X epitope was mainly expressed on phosphacan/receptor protein tyrosine phosphatase ß (RPTPß) in the developing mouse brain. Expression of the Lewis X epitope was markedly reduced in ß1,4-galactosyltransferase 2 (ß4GalT2) gene-deficient mice, which indicated that ß4GalT2 is a major galactosyltransferase required for the Lewis X epitope. We also showed that the Lewis X epitope almost disappeared due to the knockout of protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for the synthesis of O-mannosylated glycans, which indicated that the O-mannosylated glycan is responsible for presenting the Lewis X epitope. Since O-mannosylated glycans on phosphacan/RPTPß could also present human natural killer-1, another glycan epitope specifically expressed in the nervous system, our results revealed the importance of O-mannosylated glycan chains in the presentation of functional glycan epitopes in the brain.


Assuntos
Encéfalo/enzimologia , Antígenos CD15/metabolismo , Manose/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Animais , Vias Biossintéticas , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Células COS , Configuração de Carboidratos , Chlorocebus aethiops , Glicosilação , Mananas/metabolismo , Camundongos Knockout , Processamento de Proteína Pós-Traducional
16.
Biol Pharm Bull ; 38(9): 1389-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26328495

RESUMO

Protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is a Golgi glycosyltransferase that catalyzes the formation of the N-acetylglucosamine (GlcNAc) ß1→2Man linkage of O-mannosyl glycan. POMGNT1 is not modified by N-glycans because there are no potential N-glycosylation sites; however, it is not clear whether POMGNT1 is modified by O-glycans. To determine whether POMGNT1 is O-glycosylated, we prepared recombinant human POMGNT1 from HEK293T cells. The recombinant POMGNT1 was recognized by Sambucus sieboldiana lectin (SSA), and sialidase digestion of POMGNT1 decreased SSA reactivity and enhanced the reactivity of Arachis hypogaea lectin (PNA). These results suggest that POMGNT1 is modified by a sialylated core-1 O-glycan. Next, we analyzed the structures of the O-glycans on POMGNT1 by ß-elimination and pyrazolone-labeling methods in combination with mass spectrometry. We identified several mucin-type O-glycans containing (NeuAc)1(Hex)1(HexNAc)1, (NeuAc)2(Hex)1(HexNAc)1, and (NeuAc)2(Hex)2(HexNAc)2. To examine whether the O-glycans affect the functions and properties of POMGNT1, we compared glycosylated and non-glycosylated forms of recombinant sPOMGNT1 for their activity and surface hydrophobicity using the hydrophobic probe 1-anilino-8-naphthalene sulfonate (ANS). POMGNT1 activity and surface hydrophobicity were not affected by the presence or absence of O-glycans.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo
17.
Glycobiology ; 24(3): 314-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352591

RESUMO

The human natural killer-1 (HNK-1) carbohydrate comprising a sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-) is expressed on N-linked and O-mannose-linked glycans in the nervous system and involved in learning and memory functions. Although whole/core glycan structures and carrier glycoproteins for the N-linked HNK-1 epitope have been studied, carrier glycoproteins and the biosynthetic pathway of the O-mannose-linked HNK-1 epitope have not been fully characterized. Here, using mass spectrometric analyses, we identified the major carrier glycoprotein of the O-linked HNK-1 as phosphacan in developing mouse brains and determined the major O-glycan structures having the terminal HNK-1 epitope from partially purified phosphacan. The O-linked HNK-1 epitope on phosphacan almost disappeared due to the knockout of protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for O-mannose-linked glycan synthesis, indicating that the reducing terminal of the O-linked HNK-1 is mannose. We also showed that glucuronyltransferase-P (GlcAT-P) was involved in the biosynthesis of O-mannose-linked HNK-1 using the gene-deficient mice of GlcAT-P, one of the glucuronyltransferases for HNK-1 synthesis. Consistent with this result, we revealed that GlcAT-P specifically synthesized O-linked HNK-1 onto phosphacan using cultured cells. Furthermore, we characterized the as-yet-unknown epitope of the 6B4 monoclonal antibody (mAb), which was thought to recognize a unique phosphacan glycoform. The reactivity of the 6B4 mAb almost completely disappeared in GlcAT-P-deficient mice, and exogenously expressed phosphacan was selectively recognized by the 6B4 mAb when co-expressed with GlcAT-P, suggesting that the 6B4 mAb preferentially recognizes O-mannose-linked HNK-1 on phosphacan. This is the first study to show that 6B4 mAb-reactive O-mannose-linked HNK-1 in the brain is mainly carried by phosphacan.


Assuntos
Encéfalo/metabolismo , Antígenos CD57/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Antígenos CD57/química , Células COS , Configuração de Carboidratos , Chlorocebus aethiops , Glucuronosiltransferase/metabolismo , Glicosilação , Células HEK293 , Humanos , Manose/química , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química
18.
J Biochem ; 175(4): 418-425, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140954

RESUMO

The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.


Assuntos
Ribitol , Ribose , Humanos , Animais , Ribitol/metabolismo , Fosfatos , Células HEK293 , Distroglicanas/metabolismo , Oxirredutases , Mamíferos , Polissacarídeos/metabolismo , Aldeído Redutase
19.
J Biol Chem ; 287(36): 30823-32, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22801424

RESUMO

Retinoic acid (RA) is a well established anti-tumor agent inducing differentiation in various cancer cells. Recently, a robust up-regulation of human natural killer-1 sulfotransferase (HNK-1ST) was found in several subsets of melanoma cells during RA-mediated differentiation. However, the molecular mechanism underlying the tumor suppression mediated by HNK-1ST remains unclear. Here, we show that HNK-1ST changed the glycosylation state and reduced the ligand binding activity of α-dystroglycan (α-DG) in RA-treated S91 melanoma cells, which contributed to an attenuation of cell migration. Knockdown of HNK-1ST restored the glycosylation of α-DG and the migration of RA-treated S91 cells, indicating that HNK-1ST functions through glycans on α-DG. Using CHO-K1 cells, we provide direct evidence that HNK-1ST but not other homologous sulfotransferases (C4ST1 and GalNAc4ST1) suppresses the glycosylation of α-DG. The activity-abolished mutant of HNK-1ST did not show the α-DG-modulating function, indicating that the sulfotransferase activity of HNK-1ST is essential. Finally, the HNK-1ST-dependent incorporation of [(35)S]sulfate groups was detected on α-DG. These findings suggest a novel role for HNK-1ST as a tumor suppressor controlling the functional glycans on α-DG and the importance of sulfate transfer in the glycosylation of α-DG.


Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , Polissacarídeos/metabolismo , Sulfotransferases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células CHO , Movimento Celular/genética , Cricetinae , Cricetulus , Distroglicanas/genética , Glicosilação , Humanos , Laminina/genética , Mutação , Polissacarídeos/genética , Sulfotransferases/genética , Proteínas Supressoras de Tumor/genética
20.
J Biol Chem ; 287(12): 9560-7, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22270369

RESUMO

α-Dystroglycan (α-DG) is a membrane-associated glycoprotein that interacts with several extracellular matrix proteins, including laminin and agrin. Aberrant glycosylation of α-DG disrupts its interaction with ligands and causes a certain type of muscular dystrophy commonly referred to as dystroglycanopathy. It has been reported that a unique O-mannosyl tetrasaccharide (Neu5Ac-α2,3-Gal-ß1,4-GlcNAc-ß1,2-Man) and a phosphodiester-linked modification on O-mannose play important roles in the laminin binding activity of α-DG. In this study, we use several dystroglycanopathy mouse models to demonstrate that, in addition to fukutin and LARGE, FKRP (fukutin-related protein) is also involved in the post-phosphoryl modification of O-mannose on α-DG. Furthermore, we have found that the glycosylation status of α-DG in lung and testis is minimally affected by defects in fukutin, LARGE, or FKRP. α-DG prepared from wild-type lung- or testis-derived cells lacks the post-phosphoryl moiety and shows little laminin-binding activity. These results show that FKRP is involved in post-phosphoryl modification rather than in O-mannosyl tetrasaccharide synthesis. Our data also demonstrate that post-phosphoryl modification not only plays critical roles in the pathogenesis of dystroglycanopathy but also is a key determinant of α-DG functional expression as a laminin receptor in normal tissues and cells.


Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , Distrofias Musculares/metabolismo , Animais , Modelos Animais de Doenças , Distroglicanas/genética , Feminino , Humanos , Laminina/genética , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Distrofias Musculares/genética , Pentosiltransferases , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Testículo/metabolismo , Transferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA