Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750033

RESUMO

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Colesterol/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo
2.
Cell ; 171(2): 331-345.e22, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942921

RESUMO

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.


Assuntos
Macrófagos/citologia , Dinâmica Mitocondrial , Animais , Apoptose , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Células Mieloides/metabolismo , Fagócitos/metabolismo , Fagossomos/metabolismo
3.
J Biol Chem ; 298(7): 102058, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605664

RESUMO

There is substantial evidence for extensive nonvesicular sterol transport in cells. For example, lipid transfer by the steroidogenic acute regulator-related proteins (StarD) containing a StarT domain has been shown to involve several pathways of nonvesicular trafficking. Among the soluble StarT domain-containing proteins, StarD4 is expressed in most tissues and has been shown to be an effective sterol transfer protein. However, it was unclear whether the lipid composition of donor or acceptor membranes played a role in modulating StarD4-mediated transport. Here, we used fluorescence-based assays to demonstrate a phosphatidylinositol phosphate (PIP)-selective mechanism by which StarD4 can preferentially extract sterol from liposome membranes containing certain PIPs (especially, PI(4,5)P2 and to a lesser degree PI(3,5)P2). Monophosphorylated PIPs and other anionic lipids had a smaller effect on sterol transport. This enhancement of transport was less effective when the same PIPs were present in the acceptor membranes. Furthermore, using molecular dynamics (MD) simulations, we mapped the key interaction sites of StarD4 with PIP-containing membranes and identified residues that are important for this interaction and for accelerated sterol transport activity. We show that StarD4 recognizes membrane-specific PIPs through specific interaction with the geometry of the PIP headgroup as well as the surrounding membrane environment. Finally, we also observed that StarD4 can deform membranes upon longer incubations. Taken together, these results suggest a mechanism by which PIPs modulate cholesterol transfer activity via StarD4.


Assuntos
Proteínas de Membrana Transportadoras , Esteróis , Transporte Biológico , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos de Fosfatidilinositol , Esteróis/metabolismo
4.
Traffic ; 21(1): 6-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664749

RESUMO

Mammalian phagocytes carry out several essential functions, including killing and digesting infectious organisms, clearing denatured proteins, removing dead cells and removing several types of debris from the extracellular space. Many of these functions involve phagocytosis, the engulfment of a target in a specialized endocytic process and then fusion of the new phagosome with lysosomes. Phagocytes such as macrophages can phagocytose targets that are several micrometers in diameter (eg, dead cells), but in some cases they encounter much larger objects. We have studied two such examples in some detail: large deposits of lipoproteins such as those in the wall of blood vessels associated with atherosclerosis, and dead adipocytes, which are dozens of micrometers in diameter. We describe a process, which we call digestive exophagy, in which macrophages create a tight seal in contact with the target, acidify the sealed zone and secrete lysosomal contents into the contact zone. By this process, hydrolysis by lysosomal enzymes occurs in a compartment that is outside the cell. We compare this process to the well characterized digestion of bone by osteoclasts, and we point out key similarities and differences.


Assuntos
Fagócitos , Fagocitose , Animais , Digestão , Lisossomos , Macrófagos , Fagossomos
5.
J Lipid Res ; 62: 100114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34481829

RESUMO

Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder caused by mutations of the NPC1 gene. More than 300 disease-associated mutations are reported in patients, resulting in abnormal accumulation of unesterified cholesterol, glycosphingolipids, and other lipids in late endosomes and lysosomes (LE/Ly) of many cell types. Previously, we showed that treatment of many different NPC1 mutant fibroblasts with histone deacetylase inhibitors resulted in reduction of cholesterol storage, and we found that this was associated with enhanced exit of the NPC1 protein from the endoplasmic reticulum and delivery to LE/Ly. This suggested that histone deacetylase inhibitors may work through changes in protein chaperones to enhance the folding of NPC1 mutants, allowing them to be delivered to LE/Ly. In this study, we evaluated the effect of several HSP90 inhibitors on NPC1I1061T skin fibroblasts. We found that HSP90 inhibition resulted in clearance of cholesterol from LE/Ly, and this was associated with enhanced delivery of the mutant NPC1I1061T protein to LE/Ly. We also observed that inhibition of HSP90 increased the expression of HSP70, and overexpression of HSP70 also reduced cholesterol storage in NPC1I1061T fibroblasts. However, we did not see correction of cholesterol storage by arimoclomol, a drug that is reported to increase HSP70 expression, at doses up to 0.5 mM. The increase in other chaperones as a consequence of HSP90 improves folding of NPC1 protein and relieves cholesterol accumulation in NPC1 mutant fibroblasts.


Assuntos
Colesterol/metabolismo , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Células Cultivadas , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mutação
6.
J Cell Sci ; 132(23)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31719160

RESUMO

Low-density lipoprotein (LDL) deposition, aggregation and retention in the endothelial sub-intima are critical initiating events during atherosclerosis. Macrophages digest aggregated LDL (agLDL) through a process called exophagy. High-density lipoprotein (HDL) plays an atheroprotective role, but studies attempting to exploit it therapeutically have been unsuccessful, highlighting gaps in our current understanding of HDL function. Here, we characterized the role of HDL during exophagy of agLDL. We find that atherosclerotic plaque macrophages contact agLDL and form an extracellular digestive compartment similar to that observed in vitro During macrophage catabolism of agLDL in vitro, levels of free cholesterol in the agLDL are increased. HDL can extract free cholesterol directly from this agLDL and inhibit macrophage foam cell formation. Cholesterol-balanced hydroxypropyl-ß-cyclodextrin similarly reduced macrophage cholesterol uptake and foam cell formation. Finally, we show that HDL can directly extract free cholesterol, but not cholesterol esters, from agLDL in the absence of cells. Together, these results suggest that the actions of HDL can directly extract free cholesterol from agLDL during catabolism, and provide a new context in which to view the complex relationship between HDL and atherosclerosis.


Assuntos
Colesterol/química , Ciclodextrinas/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Linhagem Celular , Ciclodextrinas/genética , Feminino , Células Espumosas/metabolismo , Humanos , Imuno-Histoquímica , Lipoproteínas HDL/genética , Lipoproteínas LDL/uso terapêutico , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Espectrometria de Fluorescência
7.
Arterioscler Thromb Vasc Biol ; 40(1): 86-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31597445

RESUMO

OBJECTIVE: Aggregation and modification of LDLs (low-density lipoproteins) promote their retention and accumulation in the arteries. This is a critical initiating factor during atherosclerosis. Macrophage catabolism of agLDL (aggregated LDL) occurs using a specialized extracellular, hydrolytic compartment, the lysosomal synapse. Compartment formation by local actin polymerization and delivery of lysosomal contents by exocytosis promotes acidification of the compartment and degradation of agLDL. Internalization of metabolites, such as cholesterol, promotes foam cell formation, a process that drives atherogenesis. Furthermore, there is accumulating evidence for the involvement of TLR4 (Toll-like receptor 4) and its adaptor protein MyD88 (myeloid differentiation primary response 88) in atherosclerosis. Here, we investigated the role of TLR4 in catabolism of agLDL using the lysosomal synapse and foam cell formation. Approach and Results: Using bone marrow-derived macrophages from knockout mice, we find that TLR4 and MyD88 regulate compartment formation, lysosome exocytosis, acidification of the compartment, and foam cell formation. Using siRNA (small interfering RNA), pharmacological inhibition and knockout bone marrow-derived macrophages, we implicate SYK (spleen tyrosine kinase), PI3K (phosphoinositide 3-kinase), and Akt in agLDL catabolism using the lysosomal synapse. Using bone marrow transplantation of LDL receptor knockout mice with TLR4 knockout bone marrow, we show that deficiency of TLR4 protects macrophages from lipid accumulation during atherosclerosis. Finally, we demonstrate that macrophages in vivo form an extracellular compartment and exocytose lysosome contents similar to that observed in vitro for degradation of agLDL. CONCLUSIONS: We present a mechanism in which interaction of macrophages with agLDL initiates a TLR4 signaling pathway, resulting in formation of the lysosomal synapse, catabolism of agLDL, and lipid accumulation in vitro and in vivo.


Assuntos
Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Líquido Extracelular/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Aorta Torácica/patologia , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Espumosas/patologia , Immunoblotting , Camundongos , Camundongos Knockout , Transdução de Sinais
8.
Brain ; 143(7): 2255-2271, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572497

RESUMO

TMEM106B encodes a lysosomal membrane protein and was initially identified as a risk factor for frontotemporal lobar degeneration. Recently, a dominant D252N mutation in TMEM106B was shown to cause hypomyelinating leukodystrophy. However, how TMEM106B regulates myelination is still unclear. Here we show that TMEM106B is expressed and localized to the lysosome compartment in oligodendrocytes. TMEM106B deficiency in mice results in myelination defects with a significant reduction of protein levels of proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), the membrane proteins found in the myelin sheath. The levels of many lysosome proteins are significantly decreased in the TMEM106B-deficient Oli-neu oligodendroglial precursor cell line. TMEM106B physically interacts with the lysosomal protease cathepsin D and is required to maintain proper cathepsin D levels in oligodendrocytes. Furthermore, we found that TMEM106B deficiency results in lysosome clustering in the perinuclear region and a decrease in lysosome exocytosis and cell surface PLP levels. Moreover, we found that the D252N mutation abolished lysosome enlargement and lysosome acidification induced by wild-type TMEM106B overexpression. Instead, it stimulates lysosome clustering near the nucleus as seen in TMEM106B-deficient cells. Our results support that TMEM106B regulates myelination through modulation of lysosome function in oligodendrocytes.


Assuntos
Encéfalo/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Animais , Feminino , Degeneração Lobar Frontotemporal/genética , Humanos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência
9.
Proc Natl Acad Sci U S A ; 115(7): 1493-1498, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378960

RESUMO

Accumulation of amyloid-beta (Aß), which is associated with Alzheimer's disease, can be caused by excess production or insufficient clearance. Because of its ß-sheet structure, fibrillar Aß is resistant to proteolysis, which would contribute to slow degradation of Aß plaques in vivo. Fibrillar Aß can be internalized by microglia, which are the scavenger cells of the brain, but the fibrils are degraded only slowly in microglial lysosomes. Cathepsin B is a lysosomal protease that has been shown to proteolyze fibrillar Aß. Tripeptidyl peptidase 1 (TPP1), a lysosomal serine protease, possesses endopeptidase activity and has been shown to cleave peptides between hydrophobic residues. Herein, we demonstrate that TPP1 is able to proteolyze fibrillar Aß efficiently. Mass spectrometry analysis of peptides released from fibrillar Aß digested with TPP1 reveals several endoproteolytic cleavages including some within ß-sheet regions that are important for fibril formation. Using molecular dynamics simulations, we demonstrate that these cleavages destabilize fibrillar ß-sheet structure. The demonstration that TPP1 can degrade fibrillar forms of Aß provides insight into the turnover of fibrillar Aß and may lead to new therapeutic methods to increase degradation of Aß plaques.


Assuntos
Aminopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Serina Proteases/metabolismo , Aminopeptidases/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Carbocianinas/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta , Domínios Proteicos , Estabilidade Proteica , Serina Proteases/genética , Fatores de Tempo , Tripeptidil-Peptidase 1
10.
Arterioscler Thromb Vasc Biol ; 39(2): 137-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580573

RESUMO

Objective- During atherosclerosis, LDLs (low-density lipoproteins) accumulate in the arteries, where they become modified, aggregated, and retained. Such deposits of aggregated LDL (agLDL) can be recognized by macrophages, which attempt to digest and clear them. AgLDL catabolism promotes internalization of cholesterol and foam cell formation, which leads to the progression of atherosclerosis. Therapeutic blockade of this process may delay disease progression. When macrophages interact with agLDL in vitro, they form a novel extracellular, hydrolytic compartment-the lysosomal synapse (LS)-aided by local actin polymerization to digest agLDL. Here, we investigated the specific regulators involved in actin polymerization during the formation of the LS. Approach and Results- We demonstrate in vivo that atherosclerotic plaque macrophages contacting agLDL deposits polymerize actin and form a compartment strikingly similar to those made in vitro. Live cell imaging revealed that macrophage cortical F-actin depolymerization is required for actin polymerization to support the formation of the LS. This depolymerization is cofilin-1 dependent. Using siRNA-mediated silencing, pharmacological inhibition, genetic knockout, and stable overexpression, we elucidate key roles for Cdc42 Rho GTPase and GEF (guanine nucleotide exchange factor) Vav in promoting actin polymerization during the formation of the LS and exclude a role for Rac1. Conclusions- These results highlight critical roles for dynamic macrophage F-actin rearrangement and polymerization via cofilin-1, Vav, and Cdc42 in LS formation, catabolism of agLDL, and foam cell formation. These proteins might represent therapeutic targets to treat atherosclerotic disease.


Assuntos
Actinas/química , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Agregados Proteicos , Proteínas Proto-Oncogênicas c-vav/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Lipoproteínas LDL/química , Camundongos , Polimerização , Células RAW 264.7
11.
J Cell Sci ; 129(5): 1072-82, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801085

RESUMO

Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane.


Assuntos
Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ésteres do Colesterol/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lisossomos/ultraestrutura , Camundongos , Agregados Proteicos , Multimerização Proteica , Proteólise , Células RAW 264.7
12.
BMC Biol ; 15(1): 102, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089042

RESUMO

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Assuntos
Ciclo Celular , Metabolismo dos Lipídeos , Biogênese de Organelas , Transporte Biológico , Membrana Celular/metabolismo
13.
J Lipid Res ; 58(10): 1977-1987, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28814641

RESUMO

Macrophages use an extracellular, hydrolytic compartment formed by local actin polymerization to digest aggregated LDL (agLDL). Catabolism of agLDL promotes foam cell formation and creates an environment rich in LDL catabolites, including cholesterol and ceramide. Increased ceramide levels are present in lesional LDL, but the effect of ceramide on macrophage proatherogenic processes remains unknown. Here, we show that macrophages accumulate ceramide in atherosclerotic lesions. Using macrophages from sphingosine kinase 2 KO (SK2KO) mice to mimic ceramide-rich conditions of atherosclerotic lesions, we show that SK2KO macrophages display impaired actin polymerization and foam cell formation in response to contact with agLDL. C16-ceramide treatment impaired wild-type but not SK2KO macrophage actin polymerization, confirming that this effect is due to increased ceramide levels. We demonstrate that knockdown of RhoA or inhibition of Rho kinase restores agLDL-induced actin polymerization in SK2KO macrophages. Activation of RhoA in macrophages was sufficient to impair actin polymerization and foam cell formation in response to agLDL. Finally, we establish that during catabolism, macrophages take up ceramide from agLDL, and inhibition of ceramide generation modulates actin polymerization. These findings highlight a critical regulatory pathway by which ceramide impairs actin polymerization through increased RhoA/Rho kinase signaling and regulates foam cell formation.


Assuntos
Actinas/química , Ceramidas/farmacologia , Lipoproteínas LDL/metabolismo , Multimerização Proteica/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Ceramidas/química , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Técnicas de Inativação de Genes , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Placa Aterosclerótica/metabolismo , Estrutura Quaternária de Proteína , Células RAW 264.7
14.
J Lipid Res ; 58(4): 695-708, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28193631

RESUMO

Niemann-Pick C (NPC) disease is an autosomal recessive disorder that leads to excessive storage of cholesterol and other lipids in late endosomes and lysosomes. The large majority of NPC disease is caused by mutations in NPC1, a large polytopic membrane protein that functions in late endosomes. There are many disease-associated mutations in NPC1, and most patients are compound heterozygotes. The most common mutation, NPC1I1061T, has been shown to cause endoplasmic reticulum-associated degradation of the NPC1 protein. Treatment of patient-derived NPC1I1061T fibroblasts with histone deacetylase inhibitors (HDACis) vorinostat or panobinostat increases expression of the mutant NPC1 protein and leads to correction of the cholesterol storage. Here, we show that several other human NPC1 mutant fibroblast cell lines can also be corrected by vorinostat or panobinostat and that treatment with vorinostat extends the lifetime of the NPC1I1061T protein. To test effects of HDACi on a large number of NPC1 mutants, we engineered a U2OS cell line to suppress NPC1 expression by shRNA and then transiently transfected these cells with 60 different NPC1 mutant constructs. The mutant NPC1 did not significantly reduce cholesterol accumulation, but approximately 85% of the mutants showed reduced cholesterol accumulation when treated with vorinostat or panobinostat.


Assuntos
Proteínas de Transporte/genética , Colesterol/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Panobinostat , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção , Vorinostat
15.
Proc Natl Acad Sci U S A ; 111(14): E1402-8, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706818

RESUMO

Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (ß-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of ß-CD. Importantly, ß-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of ß-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of ß-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.


Assuntos
Lipofuscina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , beta-Ciclodextrinas/metabolismo , Animais , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Fluorescência , Técnicas In Vitro , Lipofuscina/isolamento & purificação , Camundongos , Camundongos Knockout , Oxirredução , Retinoides/isolamento & purificação
16.
J Neurosci ; 35(21): 8091-106, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019327

RESUMO

Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol-sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1(I1061T), encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1(-/-) mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1(-/-) mouse, this Npc1(tm(I1061T)Dso) model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1(I1061T) protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.


Assuntos
Alelos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína C1 de Niemann-Pick , Prevalência
17.
J Lipid Res ; 57(6): 980-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27044658

RESUMO

Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages.


Assuntos
Adipócitos/fisiologia , Exocitose/fisiologia , Macrófagos/fisiologia , Obesidade/fisiopatologia , Fagocitose/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Células Espumosas/patologia , Células Espumosas/fisiologia , Humanos , Lisossomos/fisiologia , Macrófagos/metabolismo , Camundongos , Obesidade/metabolismo
18.
Biochem Cell Biol ; 94(6): 499-506, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27421092

RESUMO

Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol moves among membrane organelles by a combination of vesicular and nonvesicular transport pathways, but the details of these transport pathways are not well understood. In this review, we discuss the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol transport protein. STARD4 can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups. We also discuss the sterol transport in late endosomes and lysosomes, which is mediated by a soluble protein, NPC2, and a membrane protein, NPC1. Homozygous mutations in these proteins lead to a lysosomal lipid storage disorder, Niemann-Pick disease type C. Many of the disease-causing mutations in NPC1 are associated with degradation of the mutant NPC1 proteins in the endoplasmic reticulum. Several histone deacetylase inhibitors have been found to rescue the premature degradation of the mutant NPC1 proteins, and one of these is now in a small clinical trial.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Esteróis/metabolismo , Transporte Biológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick
19.
Arterioscler Thromb Vasc Biol ; 35(10): 2092-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26293468

RESUMO

OBJECTIVE: Although dendritic cells are known to play a role in atherosclerosis, few studies have examined the contribution of the wide variety of dendritic cell subsets. Accordingly, their roles in atherogenesis remain largely unknown. We investigated the ability of different dendritic cell subsets to become foam cells after contact with aggregated low-density lipoprotein (LDL; the predominant form of LDL found in atherosclerotic plaques). APPROACH AND RESULTS: We demonstrate that both murine and human monocyte-derived dendritic cells use exophagy to degrade aggregated LDL, leading to foam cell formation, whereas monocyte-independent dendritic cells are unable to clear LDL aggregates by this mechanism. Exophagy is a catabolic process in which objects that cannot be internalized by phagocytosis (because of their size or association with extracellular structures) are initially digested in an extracellular acidic lytic compartment. Surprisingly, we found that monocyte-derived dendritic cells upregulate exophagy on maturation. This contrasts various forms of endocytic internalization in dendritic cells, which decrease on maturation. Finally, we show that our in vitro results are consistent with dendritic cell lipid accumulation in plaques of an ApoE(-/-) mouse model of atherosclerosis. CONCLUSIONS: Our results show that monocyte-derived dendritic cells use exophagy to degrade aggregated LDL and become foam cells, whereas monocyte-independent dendritic cells are unable to clear LDL deposits. Furthermore, we find that exophagy is upregulated on dendritic cell maturation. Thus, exophagy-mediated foam cell formation in monocyte-derived dendritic cells could play a significant role in atherogenesis.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Células Dendríticas/citologia , Células Espumosas/citologia , Lipoproteínas LDL/metabolismo , Fagocitose/fisiologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Células Espumosas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Fagocitose/genética , Distribuição Aleatória , Ativação Transcricional , Regulação para Cima
20.
Biochemistry ; 54(30): 4623-36, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168008

RESUMO

The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/ß helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.


Assuntos
Membrana Celular , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Esteróis/química , Esteróis/metabolismo , Substituição de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA