Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(5): e2207615120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696446

RESUMO

Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.


Assuntos
Cálcio , Músculo Estriado , Animais , Suínos , Cálcio/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Cálcio da Dieta
2.
Circ Res ; 133(5): 430-443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470183

RESUMO

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Suínos , Cardiomiopatia Dilatada/tratamento farmacológico , Cálcio/fisiologia , Miocárdio , Miosinas , Miócitos Cardíacos , Cardiotônicos
3.
J Mol Cell Cardiol ; 191: 27-39, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648963

RESUMO

Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Haploinsuficiência , Células-Tronco Pluripotentes Induzidas , Mutação , Miócitos Cardíacos , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosinas/metabolismo , Miosinas/genética , Diferenciação Celular/genética , Cinética
4.
J Mol Cell Cardiol ; 175: 1-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470336

RESUMO

Hallmark features of systolic heart failure are reduced contractility and impaired metabolic flexibility of the myocardium. Cardiomyocytes (CMs) with elevated deoxy ATP (dATP) via overexpression of ribonucleotide reductase (RNR) enzyme robustly improve contractility. However, the effect of dATP elevation on cardiac metabolism is unknown. Here, we developed proteolysis-resistant versions of RNR and demonstrate that elevation of dATP/ATP to ∼1% in CMs in a transgenic mouse (TgRRB) resulted in robust improvement of cardiac function. Pharmacological approaches showed that CMs with elevated dATP have greater basal respiratory rates by shifting myosin states to more active forms, independent of its isoform, in relaxed CMs. Targeted metabolomic profiling revealed a significant reprogramming towards oxidative phosphorylation in TgRRB-CMs. Higher cristae density and activity in the mitochondria of TgRRB-CMs improved respiratory capacity. Our results revealed a critical property of dATP to modulate myosin states to enhance contractility and induce metabolic flexibility to support improved function in CMs.


Assuntos
Miocárdio , Ribonucleotídeo Redutases , Camundongos , Animais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/farmacologia , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo
5.
J Mol Cell Cardiol ; 158: 1-10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989657

RESUMO

BACKGROUND: Reduced fatty acid oxidation (FAO) is a hallmark of metabolic remodeling in heart failure. Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-CoA carboxylase 2 (ACC2) deletion increases FAO and prevents cardiac dysfunction during chronic stresses, but therapeutic efficacy of this approach has not been determined. METHODS: Male and female ACC2 f/f-MCM (ACC2KO) and their respective littermate controls were subjected to chronic pressure overload by TAC surgery. Tamoxifen injection 3 weeks after TAC induced ACC2 deletion and increased FAO in ACC2KO mice with pathological hypertrophy. RESULTS: ACC2 deletion in mice with pre-existing cardiac pathology promoted FAO in female and male hearts, but improved cardiac function only in female mice. In males, pressure overload caused a downregulation in the mitochondrial oxidative function. Stimulating FAO by ACC2 deletion caused unproductive acyl-carnitine accumulation, which failed to improve cardiac energetics. In contrast, mitochondrial oxidative capacity was sustained in female pressure overloaded hearts and ACC2 deletion improved myocardial energetics. Mechanistically, we revealed a sex-dependent regulation of PPARα signaling pathway in heart failure, which accounted for the differential response to ACC2 deletion. CONCLUSION: Metabolic remodeling in the failing heart is sex-dependent which could determine the response to metabolic intervention. The findings suggest that both mitochondrial oxidative capacity and substrate preference should be considered for metabolic therapy of heart failure.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais/genética , Acetil-CoA Carboxilase/genética , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Deleção de Genes , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Oxirredução , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/administração & dosagem
6.
J Mol Cell Cardiol ; 146: 1-11, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592696

RESUMO

High fatty acid oxidation (FAO) is associated with lipotoxicity, but whether it causes lipotoxic cardiomyopathy remains controversial. Molecular mechanisms that may be responsible for FAO-induced lipotoxic cardiomyopathy are also elusive. In this study, increasing FAO by genetic deletion of acetyl-CoA carboxylase 2 (ACC2) did not induce cardiac dysfunction after 16 weeks of high fat diet (HFD) feeding. This suggests that increasing FAO, per se, does not cause metabolic cardiomyopathy in obese mice. We compared transcriptomes of control and ACC2 deficient mouse hearts under chow- or HFD-fed conditions. ACC2 deletion had a significant impact on the global transcriptome including downregulation of the peroxisome proliferator-activated receptors (PPARs) signaling and fatty acid degradation pathways. Increasing fatty acids by HFD feeding normalized expression of fatty acid degradation genes in ACC2 deficient mouse hearts to the same level as the control mice. In contrast, cardiac transcriptome analysis of the lipotoxic mouse model (db/db) showed an upregulation of PPARs signaling and fatty acid degradation pathways. Our results suggest that enhancing FAO by genetic deletion of ACC2 negatively regulates PPARs signaling through depleting endogenous PPAR ligands, which can serve as a negative feedback mechanism to prevent excess activation of PPAR signaling under non-obese condition. In obesity, excessive lipid availability negates the feedback mechanism resulting in over activation of PPAR cascade, thus contributes to the development of cardiac lipotoxicity.


Assuntos
Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Acetil-CoA Carboxilase/deficiência , Acetil-CoA Carboxilase/metabolismo , Animais , Sequência de Bases , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo/genética , Comportamento Alimentar , Camundongos Knockout , Oxirredução , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
7.
J Biol Chem ; 294(10): 3707-3719, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587573

RESUMO

Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/metabolismo , Difosfato de Adenosina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Cricetinae , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Hidrólise , Ativação do Canal Iônico , Modelos Moleculares , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Ligação Proteica , Conformação Proteica em alfa-Hélice
8.
J Lipid Res ; 56(12): 2337-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26489644

RESUMO

In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1(-/-) cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Restrição Calórica , Colesterol/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Lipoproteínas/genética , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética
9.
Mamm Genome ; 25(11-12): 549-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25001233

RESUMO

Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.


Assuntos
Aterosclerose/genética , Metabolismo Energético/genética , Obesidade/genética , Animais , Composição Corporal , Peso Corporal , Cromossomos de Mamíferos/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Locos de Características Quantitativas
10.
Biochim Biophys Acta ; 1821(3): 425-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22179025

RESUMO

The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Gordura Abdominal/metabolismo , Expressão Gênica , Lipoproteínas/metabolismo , Obesidade/metabolismo , Redução de Peso , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Gordura Abdominal/patologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Restrição Calórica , Movimento Celular , Colesterol/metabolismo , Feminino , Lipólise , Lipoproteínas/genética , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/dietoterapia , Obesidade/fisiopatologia , Triglicerídeos/metabolismo
11.
Cell Rep ; 42(6): 112641, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310861

RESUMO

Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.


Assuntos
Cetoácidos , Transportadores de Ácidos Monocarboxílicos , Camundongos , Animais , Cetoácidos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Gluconeogênese , Aminoácidos de Cadeia Ramificada/metabolismo , Hepatócitos/metabolismo , Piruvatos/metabolismo , Glucose/metabolismo
13.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747691

RESUMO

Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.

14.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778318

RESUMO

Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue. Significance Statement: Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.

15.
Am J Physiol Endocrinol Metab ; 302(8): E961-71, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22318945

RESUMO

Lymphotoxin-α (LTα) is secreted by lymphocytes and acts through tumor necrosis factor-α receptors and the LTß receptor. Our goals were to determine whether LT has a role in obesity and investigate whether LT contributes to the link between obesity and adipose tissue lymphocyte accumulation. LT deficient (LT(-/-)) and wild-type (WT) mice were fed standard pelleted rodent chow or a high-fat/high-sucrose diet (HFHS) for 13 wk. Body weight, body composition, and food intake were measured. Glucose tolerance was assessed. Systemic and adipose tissue inflammatory statuses were evaluated by quantifying plasma adipokine levels and tissue macrophage and T cell-specific gene expression in abdominal fat. LT(-/-) mice were smaller (20%) and leaner (25%) than WT controls after 13 wk of HFHS diet feeding. LT(-/-) mice showed improved glucose tolerance, suggesting that, in WT mice, LT may impair glucose metabolism. Surprisingly, adipose tissue from rodent chow- and HFHS-fed LT(-/-) mice exhibited increased T lymphocyte and macrophage infiltration compared with WT mice. Despite the fact that LT(-/-) mice exhibited an enhanced inflammatory status at the systemic and tissue level even when fed rodent chow, they were protected from enhanced diet-induced obesity and insulin resistance. Thus, LT contributes to body weight and adiposity and is required to modulate the accumulation of immune cells in adipose tissue.


Assuntos
Tecido Adiposo Branco/imunologia , Linfotoxina-alfa/metabolismo , Macrófagos/imunologia , Obesidade/imunologia , Linfócitos T/imunologia , Adipocinas/sangue , Adiposidade , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Expressão Gênica , Regulação da Expressão Gênica , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Resistência à Insulina , Linfotoxina-alfa/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Linfócitos T/metabolismo , Aumento de Peso
16.
Arterioscler Thromb Vasc Biol ; 31(6): 1326-32, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474830

RESUMO

OBJECTIVE: Levels of serum amyloid A (SAA), an acute-phase protein carried on high-density lipoprotein (HDL), increase in inflammatory states and are associated with increased risk of cardiovascular disease. HDL colocalizes with vascular proteoglycans in atherosclerotic lesions. However, its major apolipoprotein, apolipoprotein A-I, has no proteoglycan-binding domains. Therefore, we investigated whether SAA, which has proteoglycan-binding domains, plays a role in HDL retention by proteoglycans. METHODS AND RESULTS: HDL from control mice and mice deficient in both SAA1.1 and SAA2.1 (SAA knockout mice) injected with bacterial lipopolysaccharide (LPS) was studied. SAA mRNA expression in the liver and plasma levels of SAA increased dramatically in C57BL/6 mice after LPS administration, although HDL cholesterol did not change. Fast protein liquid chromatography analysis showed most of the SAA to be in HDL. Mass spectrometric analysis indicated that HDL from LPS-injected control mice had high levels of SAA1.1/2.1 and reduced levels of apolipoprotein A-I. HDL from LPS-injected control mice demonstrated high-affinity binding to biglycan relative to normal mouse HDL. In contrast, HDL from LPS-injected SAA knockout mice showed very little binding to biglycan, consistent with SAA facilitating the binding of HDL to vascular proteoglycans. CONCLUSION: SAA enrichment of HDL under inflammatory conditions plays an important role in the binding of HDL to vascular proteoglycans.


Assuntos
Lipopolissacarídeos/toxicidade , Lipoproteínas HDL/metabolismo , Proteoglicanas/metabolismo , Proteína Amiloide A Sérica/fisiologia , Animais , Aterosclerose/etiologia , Biglicano/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575090

RESUMO

In hypertrophied and failing hearts, fuel metabolism is reprogrammed to increase glucose metabolism, especially glycolysis. This metabolic shift favors biosynthetic function at the expense of ATP production. Mechanisms responsible for the switch are poorly understood. We found that inhibitory factor 1 of the mitochondrial FoF1-ATP synthase (ATPIF1), a protein known to inhibit ATP hydrolysis by the reverse function of ATP synthase during ischemia, was significantly upregulated in pathological cardiac hypertrophy induced by pressure overload, myocardial infarction, or α-adrenergic stimulation. Chemical cross-linking mass spectrometry analysis of hearts hypertrophied by pressure overload suggested that increased expression of ATPIF1 promoted the formation of FoF1-ATP synthase nonproductive tetramer. Using ATPIF1 gain- and loss-of-function cell models, we demonstrated that stalled electron flow due to impaired ATP synthase activity triggered mitochondrial ROS generation, which stabilized HIF1α, leading to transcriptional activation of glycolysis. Cardiac-specific deletion of ATPIF1 in mice prevented the metabolic switch and protected against the pathological remodeling during chronic stress. These results uncover a function of ATPIF1 in nonischemic hearts, which gives FoF1-ATP synthase a critical role in metabolic rewiring during the pathological remodeling of the heart.


Assuntos
Glicólise , ATPases Mitocondriais Próton-Translocadoras , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Miocárdio/metabolismo , Ativação Transcricional , Regulação para Cima , Proteína Inibidora de ATPase
18.
J Autoimmun ; 34(2): 96-104, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19664906

RESUMO

We developed a panel of non-obese diabetic (NOD) mice deficient in major lysosomal cysteine proteases (cathepsins S, L and B) to identify protease enzymes essential for autoimmune diabetes. Null alleles for cathepsins (Cts) S, L or B were introgressed onto the NOD genetic background with 19 Idd markers at homozygosity. Diabetes onset was determined among females aged up to 6 months. We evaluated insulitis and sialadenitis in tissues using histology and computer assisted morphology. NOD mice deficient in Ctss or Ctsb were partially protected from diabetes with incidence at 33% and 28%, respectively, versus wild-type NOD (69%; p < 0.00001). NODs lacking cathepsin L (Ctsl-/-) are completely protected from IDDM, as originally shown by others. Ctsl, Ctss, or Ctsb heterozygous mice were able to develop IDDM, although incidence levels were significantly lower for Ctsb+/- (50%) and Ctsl+/- (55%) as compared to NODs (69%; p < 0.03). Ctsl-/- mice contain functional, diabetogenic T cells and an enriched Foxp3+ regulatory T cell population, and diabetes resistance was due to the presence of an expanded population of regulatory T cells. These data provide additional information about the potency of the diabetogenic T cell population in Ctsl-/- mice which were comparable in potency to wild-type NOD mice. These data illustrate the critical contribution of each of these proteases in determining IDDM in the NOD mouse and provide a useful set of models for further studies.


Assuntos
Catepsina B/metabolismo , Catepsina L/metabolismo , Catepsinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Idade de Início , Animais , Antígenos CD4/biossíntese , Catepsina B/genética , Catepsina B/imunologia , Catepsina L/genética , Catepsina L/imunologia , Catepsinas/genética , Catepsinas/imunologia , Movimento Celular/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Fatores de Transcrição Forkhead/biossíntese , Linfopenia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Pancreatite , Sialadenite , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/patologia
19.
PLoS One ; 15(12): e0242749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264332

RESUMO

Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic ß-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in ß-cells, which results in the general perception that this Cl-channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting ß-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat ß-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of ß-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic ß-cell secretory response suggesting that intrinsic ß-cell dysfunction may also participate in the pathogenesis of CFRD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Idoso , Animais , Anticorpos/metabolismo , Antígenos/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lactente , Secreção de Insulina , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Reprodutibilidade dos Testes , Adulto Jovem
20.
Circulation ; 117(3): 421-8, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18158360

RESUMO

BACKGROUND: Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound alpha-lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor-alpha- and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory responses in vivo. Here, we investigated whether LA inhibits atherosclerosis in apolipoprotein E-deficient (apoE-/-) and apoE/low-density lipoprotein receptor-deficient mice, 2 well-established animal models of human atherosclerosis. METHODS AND RESULTS: Four-week-old female apoE-/- mice (n=20 per group) or apoE/low-density lipoprotein receptor-deficient mice (n=21 per group) were fed for 10 weeks a Western-type chow diet containing 15% fat and 0.125% cholesterol without or with 0.2% (wt/wt) R,S-LA or a normal chow diet containing 4% fat without or with 0.2% (wt/wt) R-LA, respectively. Supplementation with LA significantly reduced atherosclerotic lesion formation in the aortic sinus of both mouse models by approximately 20% and in the aortic arch and thoracic aorta of apoE-/- and apoE/low-density lipoprotein receptor-deficient mice by approximately 55% and 40%, respectively. This strong antiatherogenic effect of LA was associated with almost 40% less body weight gain and lower serum and very low-density lipoprotein levels of triglycerides but not cholesterol. In addition, LA supplementation reduced aortic expression of adhesion molecules and proinflammatory cytokines and aortic macrophage accumulation. These antiinflammatory effects of LA were more pronounced in the aortic arch and the thoracic aorta than in the aortic sinus, reflecting the corresponding reductions in atherosclerosis. CONCLUSIONS: Our study shows that dietary LA supplementation inhibits atherosclerotic lesion formation in 2 mouse models of human atherosclerosis, an inhibition that appears to be due to the "antiobesity," antihypertriglyceridemic, and antiinflammatory effects of LA. LA may be a useful adjunct in the prevention and treatment of atherosclerotic vascular diseases.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Receptores de LDL/deficiência , Ácido Tióctico/farmacologia , Animais , Aterosclerose/prevenção & controle , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Camundongos , Ácido Tióctico/administração & dosagem , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA