Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37070436

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Estudos Prospectivos , Dobutamina/farmacologia , Metabolismo Energético , Trifosfato de Adenosina
2.
Artigo em Inglês | MEDLINE | ID: mdl-38878138

RESUMO

In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.

3.
NMR Biomed ; : e4950, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046414

RESUMO

Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.

4.
Cardiovasc Drugs Ther ; 37(2): 379-399, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35881280

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Diagnóstico por Imagem , Exercício Físico , Função Ventricular Esquerda
5.
Circulation ; 144(21): 1664-1678, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34743560

RESUMO

BACKGROUND: Transient pulmonary congestion during exercise is emerging as an important determinant of reduced exercise capacity in heart failure with preserved ejection fraction (HFpEF). We sought to determine whether an abnormal cardiac energetic state underpins this process. METHODS: We recruited patients across the spectrum of diastolic dysfunction and HFpEF (controls, n=11; type 2 diabetes, n=9; HFpEF, n=14; and severe diastolic dysfunction attributable to cardiac amyloidosis, n=9). Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to ATP ratio. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging and echocardiography and lung water using magnetic resonance proton density mapping. Studies were performed at rest and during submaximal exercise using a magnetic resonance imaging ergometer. RESULTS: Paralleling the stepwise decline in diastolic function across the groups (E/e' ratio; P<0.001) was an increase in NT-proBNP (N-terminal pro-brain natriuretic peptide; P<0.001) and a reduction in phosphocreatine/ATP ratio (control, 2.15 [2.09, 2.29]; type 2 diabetes, 1.71 [1.61, 1.91]; HFpEF, 1.66 [1.44, 1.89]; cardiac amyloidosis, 1.30 [1.16, 1.53]; P<0.001). During 20-W exercise, lower left ventricular diastolic filling rates (r=0.58; P<0.001), lower left ventricular diastolic reserve (r=0.55; P<0.001), left atrial dilatation (r=-0.52; P<0.001), lower right ventricular contractile reserve (right ventricular ejection fraction change, r=0.57; P<0.001), and right atrial dilation (r=-0.71; P<0.001) were all linked to lower phosphocreatine/ATP ratio. Along with these changes, pulmonary proton density mapping revealed transient pulmonary congestion in patients with HFpEF (+4.4% [0.5, 6.4]; P=0.002) and cardiac amyloidosis (+6.4% [3.3, 10.0]; P=0.004), which was not seen in healthy controls (-0.1% [-1.9, 2.1]; P=0.89) or type 2 diabetes without HFpEF (+0.8% [-1.7, 1.9]; P=0.82). The development of exercise-induced pulmonary congestion was associated with lower phosphocreatine/ATP ratio (r=-0.43; P=0.004). CONCLUSIONS: A gradient of myocardial energetic deficit exists across the spectrum of HFpEF. Even at low workload, this energetic deficit is related to markedly abnormal exercise responses in all 4 cardiac chambers, which is associated with detectable pulmonary congestion. The findings support an energetic basis for transient pulmonary congestion in HFpEF.


Assuntos
Exercício Físico/efeitos adversos , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/etiologia , Hiperemia/complicações , Hiperemia/fisiopatologia , Circulação Pulmonar , Idoso , Biomarcadores , Suscetibilidade a Doenças , Ecocardiografia , Teste de Esforço , Feminino , Testes de Função Cardíaca , Humanos , Hiperemia/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Edema Pulmonar/diagnóstico , Índice de Gravidade de Doença , Volume Sistólico , Função Ventricular Esquerda
6.
Magn Reson Med ; 88(3): 1324-1332, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35468245

RESUMO

PURPOSE: To determine the effect of altering anesthetic oxygen protocols on measurements of cerebral perfusion and metabolism in the rodent brain. METHODS: Seven rats were anesthetized and underwent serial MRI scans with hyperpolarized [1-13 C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas protocol used varied from 100:0% to 90:10% to 60:40% O2 :N2 O. Spectra were quantified with AMARES and perfusion imaging was processed using model-free deconvolution. A 1-way ANOVA was used to compare results across groups, with pairwise t tests performed with correction for multiple comparisons. Spearman's correlation analysis was performed between O2 % and MR measurements. RESULTS: There was a significant increase in bicarbonate:total 13 C carbon and bicarbonate:13 C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (0.02 ± 0.01 vs. 0.019 ± 0.005 and 0.02 ± 0.01 vs. 0.05 ± 0.02, respectively) and (0.04 ± 0.01 vs. 0.03 ± 0.01 and 0.04 ± 0.01 vs. 0.08 ± 0.02, respectively). There was a significant difference in 13 C pyruvate time to peak when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (13 ± 2 vs. 10 ± 1 and 13 ± 2 vs. 7.5 ± 0.5 s, respectively) as well as significant differences in cerebral blood flow (CBF) between gas protocols. Significant correlations between bicarbonate:13 C pyruvate and gas protocol (ρ = -0.47), mean transit time and gas protocol (ρ = 0.41) and 13 C pyruvate time-to-peak and cerebral blood flow (ρ = -0.54) were also observed. CONCLUSIONS: These results demonstrate that the detection and quantification of cerebral metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized rodent brain.


Assuntos
Anestésicos Inalatórios , Bicarbonatos , Anestésicos Inalatórios/farmacologia , Animais , Bicarbonatos/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Ratos
7.
Circ Res ; 126(6): 725-736, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32078413

RESUMO

RATIONALE: The recent development of hyperpolarized 13C magnetic resonance spectroscopy has made it possible to measure cellular metabolism in vivo, in real time. OBJECTIVE: By comparing participants with and without type 2 diabetes mellitus (T2DM), we report the first case-control study to use this technique to record changes in cardiac metabolism in the healthy and diseased human heart. METHODS AND RESULTS: Thirteen people with T2DM (glycated hemoglobin, 6.9±1.0%) and 12 age-matched healthy controls underwent assessment of cardiac systolic and diastolic function, myocardial energetics (31P-magnetic resonance spectroscopy), and lipid content (1H-magnetic resonance spectroscopy) in the fasted state. In a subset (5 T2DM, 5 control), hyperpolarized [1-13C]pyruvate magnetic resonance spectra were also acquired and in 5 of these participants (3 T2DM, 2 controls), this was successfully repeated 45 minutes after a 75 g oral glucose challenge. Downstream metabolism of [1-13C]pyruvate via PDH (pyruvate dehydrogenase, [13C]bicarbonate), lactate dehydrogenase ([1-13C]lactate), and alanine transaminase ([1-13C]alanine) was assessed. Metabolic flux through cardiac PDH was significantly reduced in the people with T2DM (Fasted: 0.0084±0.0067 [Control] versus 0.0016±0.0014 [T2DM], Fed: 0.0184±0.0109 versus 0.0053±0.0041; P=0.013). In addition, a significant increase in metabolic flux through PDH was observed after the oral glucose challenge (P<0.001). As is characteristic of diabetes mellitus, impaired myocardial energetics, myocardial lipid content, and diastolic function were also demonstrated in the wider study cohort. CONCLUSIONS: This work represents the first demonstration of the ability of hyperpolarized 13C magnetic resonance spectroscopy to noninvasively assess physiological and pathological changes in cardiac metabolism in the human heart. In doing so, we highlight the potential of the technique to detect and quantify metabolic alterations in the setting of cardiovascular disease.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Miocárdio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Jejum/metabolismo , Feminino , Glucose/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo
8.
Circulation ; 141(24): 1971-1985, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32438845

RESUMO

BACKGROUND: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition. METHODS: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction <55% (SevAS-reduced ejection fraction, n=15), healthy volunteers with nonhypertrophied hearts with normal systolic function (normal healthy volunteer, n=30), and patients with nonhypertrophied, non-pressure-loaded hearts with normal systolic function undergoing cardiac surgery and donating LV biopsy (non-pressure-loaded heart biopsy, n=7). All underwent cardiac magnetic resonance imaging and 31P magnetic resonance spectroscopy for myocardial energetics. LV biopsies (AS and non-pressure-loaded heart biopsy) were analyzed for CK total activity, CK isoforms, citrate synthase activity, and total creatine. Mitochondria-sarcomere diffusion distances were calculated by using serial block-face scanning electron microscopy. RESULTS: In the absence of failure, CK flux was lower in the presence of AS (by 32%, P=0.04), driven primarily by reduction in phosphocreatine/ATP (by 17%, P<0.001), with CK kf unchanged (P=0.46). Although lowest in the SevAS-reduced ejection fraction group, CK flux was not different from the SevAS-preserved ejection fraction group (P>0.99). Accompanying the fall in CK flux, total CK and citrate synthase activities and the absolute activities of mitochondrial-type CK and CK-MM isoforms were also lower (P<0.02, all analyses). Median mitochondria-sarcomere diffusion distances correlated well with CK total activity (r=0.86, P=0.003). CONCLUSIONS: Total CK capacity is reduced in SevAS, with median values lowest in those with systolic failure, consistent with reduced energy supply reserve. Despite this, in vivo magnetic resonance spectroscopy measures of resting CK flux suggest that ATP delivery is reduced earlier, at the moderate AS stage, where LV function remains preserved. These findings show that significant energetic impairment is already established in moderate AS and suggest that a fall in CK flux is not by itself a necessary cause of transition to systolic failure. However, because ATP demands increase with AS severity, this could increase susceptibility to systolic failure. As such, targeting CK capacity and flux may be a therapeutic strategy to prevent and treat systolic failure in AS.


Assuntos
Estenose da Valva Aórtica/sangue , Creatina Quinase/sangue , Metabolismo Energético/fisiologia , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/sangue , Função Ventricular Esquerda/fisiologia , Trifosfato de Adenosina/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/sangue , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/fisiopatologia
9.
Magn Reson Med ; 85(2): 790-801, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32894618

RESUMO

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.


Assuntos
Imagem Ecoplanar , Ácido Pirúvico , Isótopos de Carbono , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Estudos Retrospectivos
10.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33538063

RESUMO

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Assuntos
Trifosfato de Adenosina , Miocárdio , Animais , Creatina Quinase , Espectroscopia de Ressonância Magnética , Fosfocreatina , Ratos
11.
FASEB J ; 34(11): 14878-14891, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32954525

RESUMO

Nicotinic acid receptor agonists have previously been shown to cause acute reductions in cardiac contractility. We sought to uncover the changes in cardiac metabolism underlying these alterations in function. In nine humans, we recorded cardiac energetics and function before and after a single oral dose of nicotinic acid using cardiac MRI to demonstrate contractile function and Phosphorus-31 (31 P) magnetic resonance spectroscopy to demonstrate myocardial energetics. Nicotinic Acid 400 mg lowered ejection fraction by 4% (64 ± 8% to 60 ± 7%, P = .03), and was accompanied by a fall in phosphocreatine/ATP ratio by 0.4 (2.2 ± 0.4 to 1.8 ± 0.1, P = .04). In four groups of eight Wistar rats, we used pyruvate dehydrogenase (PDH) flux studies to demonstrate changes in carbohydrate metabolism induced by the nicotinic acid receptor agonist, Acipimox, using hyperpolarized Carbon-13 (13 C) magnetic resonance spectroscopy. In rats which had been starved overnight, Acipimox caused a fall in ejection fraction by 7.8% (67.5 ± 8.9 to 60 ± 3.1, P = .03) and a nearly threefold rise in flux through PDH (from 0.182 ± 0.114 to 0.486 ± 0.139, P = .002), though this rise did not match pyruvate dehydrogenase flux observed in rats fed carbohydrate rich chow (0.726 ± 0.201). In fed rats, Acipimox decreased pyruvate dehydrogenase flux (to 0.512 ± 0.13, P = .04). Concentration of plasma insulin fell by two-thirds in fed rats administered Acipimox (from 1695 ± 891 ng/L to 550 ± 222 ng/L, P = .005) in spite of glucose concentrations remaining the same. In conclusion, we demonstrate that nicotinic acid receptor agonists impair cardiac contractility associated with a decline in cardiac energetics and show that the mechanism is likely a combination of reduced fatty acid availability and a failure to upregulate carbohydrate metabolism, essentially starving the heart of fuel.


Assuntos
Metabolismo Energético , Coração/efeitos dos fármacos , Hipolipemiantes/farmacologia , Contração Miocárdica , Niacina/análogos & derivados , Pirazinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Trifosfato de Adenosina/sangue , Adulto , Animais , Metabolismo dos Carboidratos , Humanos , Hipolipemiantes/administração & dosagem , Insulina/sangue , Masculino , Fosfocreatina/sangue , Pirazinas/administração & dosagem , Complexo Piruvato Desidrogenase/metabolismo , Ratos , Ratos Wistar
12.
MAGMA ; 34(1): 49-56, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32910316

RESUMO

OBJECTIVES: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time,  using hyperpolarized DHAc.


Assuntos
Di-Hidroxiacetona/química , Animais , Isótopos de Carbono , Gluconeogênese , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Prótons
13.
Magn Reson Med ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090502

RESUMO

PURPOSE: Phosphorous MR spectroscopy (31P-MRS) forms a powerful, non-invasive research tool to quantify the energetics of the heart in diverse patient populations. 31P-MRS is frequently applied alongside other radiological examinations, many of which use various contrast agents that shorten relaxation times of water in conventional proton MR, for a better characterisation of cardiac function, or following prior computed tomography (CT). It is, however, unknown whether these agents confound 31P-MRS signals, for example, 2,3-diphosphoglycerate (2,3-DPG). METHODS: In this work, we quantitatively assess the impact of non-ionic, low osmolar iodinated CT contrast agent (iopamidol/Niopam), gadolinium chelates (linear gadopentetic acid dimeglumine/Magnevist and macrocyclic gadoterate meglumine/Dotarem) and superparamagnetic iron oxide nanoparticles (ferumoxytol/Feraheme) on the nuclear T1 and T2 of 31P metabolites (ie, 2,3-DPG), and 1H in water in live human blood and saline phantoms at 11.7 T. RESULTS: Addition of all contrast agents led to significant shortening of all relaxation times in both 1H and 31P saline phantoms. On the contrary, the T1 relaxation time of 2,3-DPG in blood was significantly shortened only by Magnevist (P = .03). Similarly, the only contrast agent that influenced the T2 relaxation times of 2,3-DPG in blood samples was ferumoxytol (P = .02). CONCLUSION: Our results show that, unlike conventional proton MR, phosphorus MRS is unconfounded in patients who have had prior CT with contrast, not all gadolinium-based contrast agents influence 31P-MRS data in vivo, and that ferumoxytol is a promising contrast agent for the reduction in 31P-MRS blood-pool signal.

14.
Circ Res ; 122(8): 1084-1093, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440071

RESUMO

RATIONALE: Current cardiovascular clinical imaging techniques offer only limited assessment of innate immune cell-driven inflammation, which is a potential therapeutic target in myocardial infarction (MI) and other diseases. Hyperpolarized magnetic resonance (MR) is an emerging imaging technology that generates contrast agents with 10- to 20 000-fold improvements in MR signal, enabling cardiac metabolite mapping. OBJECTIVE: To determine whether hyperpolarized MR using [1-13C]pyruvate can assess the local cardiac inflammatory response after MI. METHODS AND RESULTS: We performed hyperpolarized [1-13C]pyruvate MR studies in small and large animal models of MI and in macrophage-like cell lines and measured the resulting [1-13C]lactate signals. MI caused intense [1-13C]lactate signal in healing myocardial segments at both day 3 and 7 after rodent MI, which was normalized at both time points after monocyte/macrophage depletion. A near-identical [1-13C]lactate signature was also seen at day 7 after experimental MI in pigs. Hyperpolarized [1-13C]pyruvate MR spectroscopy in macrophage-like cell suspensions demonstrated that macrophage activation and polarization with lipopolysaccharide almost doubled hyperpolarized lactate label flux rates in vitro; blockade of glycolysis with 2-deoxyglucose in activated cells normalized lactate label flux rates and markedly inhibited the production of key proinflammatory cytokines. Systemic administration of 2-deoxyglucose after rodent MI normalized the hyperpolarized [1-13C]lactate signal in healing myocardial segments at day 3 and also caused dose-dependent improvement in IL (interleukin)-1ß expression in infarct tissue without impairing the production of key reparative cytokines. Cine MRI demonstrated improvements in systolic function in 2-DG (2-deoxyglucose)-treated rats at 3 months. CONCLUSIONS: Hyperpolarized MR using [1-13C]pyruvate provides a novel method for the assessment of innate immune cell-driven inflammation in the heart after MI, with broad potential applicability across other cardiovascular disease states and suitability for early clinical translation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Miocardite/diagnóstico por imagem , Animais , Isótopos de Carbono/análise , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Ácido Láctico/análise , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imagem Cinética por Ressonância Magnética/métodos , Camundongos , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Miocardite/imunologia , Miocardite/metabolismo , Miocárdio/imunologia , Miocárdio/metabolismo , Ácido Pirúvico/análise , Células RAW 264.7 , Ratos , Ratos Wistar , Suínos
15.
Magn Reson Med ; 79(4): 2135-2141, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28722201

RESUMO

PURPOSE: Echo planar imaging is an attractive rapid imaging readout that can image hyperpolarized compounds in vivo. By alternating the sign of the phase encoding gradient waveform, spatial offsets arising from uncertain frequency shifts can be determined. We show here that blip-reversed echo planar imaging can also be used to correct for susceptibility and B0 inhomogeneity effects that would otherwise produce image-domain distortion in the heart. METHODS: Previously acquired blip-reversed cardiac 3D-Spectral-Spatial echo planar imaging volumetric timecourses of hyperpolarized [1-13 C]pyruvate were distortion corrected by a deformation field estimated by reconstructing signal-to-noise ratio (SNR)-weighted progressively subsampled temporally summed images of each metabolite. RESULTS: Reconstructing blip-reversed data as proposed produced volumetric timecourses that overlaid with proton reference images more consistently than without such corrections. CONCLUSION: The method proposed may form an attractive method to correct for image-domain distortions in hyperpolarized echo planar imaging experiments. Magn Reson Med 79:2135-2141, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Imagem Ecoplanar , Coração/diagnóstico por imagem , Imageamento Tridimensional , Razão Sinal-Ruído , Algoritmos , Aorta Abdominal/diagnóstico por imagem , Bicarbonatos/química , Humanos , Processamento de Imagem Assistida por Computador , Ácido Láctico/química , Fígado/diagnóstico por imagem , Modelos Estatísticos , Imagens de Fantasmas , Ácido Pirúvico/química , Reprodutibilidade dos Testes
16.
NMR Biomed ; 31(6): e3912, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29637642

RESUMO

The aim of this work was to investigate the use of 13 C-labelled acetoacetate and ß-hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1-13 C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1-13 C]ß-hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1-13 C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1-13 C]acetoacetate and [1-13 C]ß-hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (ß-hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1-13 C]acetoacetate and [1-13 C]ß-hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart.


Assuntos
Corpos Cetônicos/metabolismo , Miocárdio/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Acetilcarnitina/metabolismo , Animais , Bicarbonatos/metabolismo , Ácido Glutâmico/metabolismo , Cinética , Masculino , Redes e Vias Metabólicas , Metaboloma , Perfusão , Ratos , Ratos Wistar , Fatores de Tempo
17.
NMR Biomed ; 31(9): e3992, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040147

RESUMO

Hyperpolarized [1-13 C] pyruvate MRS can measure cardiac pyruvate dehydrogenase (PDH) flux in vivo through 13 C-label incorporation into bicarbonate. Using this technology, substrate availability as well as pathology have been shown to modulate PDH flux. Clinical protocols attempt to standardize PDH flux with oral glucose loading prior to scanning, while rodents in preclinical studies are usually scanned in the fed state. We aimed to establish which strategy was optimal to maximize PDH flux and minimize its variability in both control and Type II diabetic rats, without affecting the pathological variation being assessed. We found similar variances in the bicarbonate to pyruvate ratio, reflecting PDH flux, in fed and fasted/glucose-loaded animals, which showed no statistically significant differences. Furthermore, fasting/glucose loading did not alter the low PDH flux seen in Type II diabetic rats. Overall this suggests that preclinical cardiac hyperpolarized magnetic resonance studies could be performed either in the fed or in the fasted/glucose-loaded state. Centres planning to start new clinical studies with cardiac hyperpolarized magnetic resonance in man may find it beneficial to run small proof-of-concept trials to determine whether metabolic standardizations by oral or intravenous glucose load are beneficial compared with scanning patients in the fed state.


Assuntos
Espectroscopia de Ressonância Magnética , Miocárdio/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Bicarbonatos/metabolismo , Glicemia/metabolismo , Feminino , Ácido Pirúvico/metabolismo , Ratos Wistar
18.
Proc Natl Acad Sci U S A ; 112(10): 3164-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713362

RESUMO

Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Coração/fisiologia , Homeostase , Ferro/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Magn Reson Med ; 77(5): 1810-1817, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27173806

RESUMO

PURPOSE: To demonstrate the feasibility of mapping intracellular pH within the in vivo rodent heart. Alterations in cardiac acid-base balance can lead to acute contractile depression and alterations in Ca2+ signaling. The transient reduction in adenosine triphosphate (ATP) consumption and cardiac contractility may be initially beneficial; however, sustained pH changes can be maladaptive, leading to myocardial damage and electrical arrhythmias. METHODS: Spectrally selective radiofrequency (RF) pulses were used to excite the HCO3- and CO2 resonances individually while preserving signal from the injected hyperpolarized [1-13 C]pyruvate. The large flip angle pulses were placed within a three-dimensional (3D) imaging acquisition, which exploited CA-mediated label exchange between HCO3- and CO2 . Images at 4.5 × 4.5 × 5 mm3 resolution were obtained in the in vivo rodent heart. The technique was evaluated in healthy rodents scanned at baseline and during high cardiac workload induced by dobutamine infusion. RESULTS: The intracellular pH was measured to be 7.15 ± 0.04 at baseline, and decreased to 6.90 ± 0.06 following 15 min of continuous ß-adrenergic stimulation. CONCLUSIONS: Volumetric maps of intracellular pH can be obtained following an injection of hyperpolarized [1-13 C]pyruvate. The new method is anticipated to enable assessment of stress-inducible ischemia and potential ventricular arrythmogenic substrates within the ischemic heart. Magn Reson Med 77:1810-1817, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Isótopos de Carbono/química , Miocárdio/patologia , Ácido Pirúvico/química , Trifosfato de Adenosina/química , Animais , Arritmias Cardíacas/patologia , Sinalização do Cálcio , Dióxido de Carbono/química , Anidrases Carbônicas/química , Citosol/metabolismo , Dobutamina/química , Coração/fisiologia , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Isquemia Miocárdica/patologia , Ondas de Rádio , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/química
20.
Magn Reson Med ; 78(6): 2082-2094, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28127795

RESUMO

PURPOSE: In vivo MRS is often characterized by a spectral signal-to-noise ratio (SNR) that varies highly between experiments. A common design for spectroscopic studies is to compare the ratio of two spectral peak amplitudes between groups, e.g. individual PCr/γ-ATP ratios in 31 P-MRS. The uncertainty on this ratio is often neglected. We wished to explore this assumption. THEORY: The canonical theory for the propagation of uncertainty on the ratio of two spectral peaks and its incorporation in the Frequentist hypothesis testing framework by weighted averaging is presented. METHODS: Two retrospective re-analyses of studies comparing spectral peak ratios and one prospective simulation were performed using both the weighted and unweighted methods. RESULTS: It was found that propagating uncertainty correctly improved statistical power in all cases considered, which could be used to reduce the number of subjects required to perform an MR study. CONCLUSION: The variability of in vivo spectroscopy data is often accounted for by requiring it to meet an SNR threshold. A theoretically sound propagation of the variable uncertainty caused by quantifying spectra of differing SNR is therefore likely to improve the power of in vivo spectroscopy studies. Magn Reson Med 78:2082-2094, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Algoritmos , Animais , Simulação por Computador , Diabetes Mellitus/diagnóstico por imagem , Humanos , Modelos Estatísticos , Imagem Molecular , Método de Monte Carlo , Fósforo/química , Estudos Prospectivos , Ratos , Ratos Endogâmicos SHR , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA