Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biotechnol Bioeng ; 121(6): 1859-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470343

RESUMO

Downstream processing is the bottleneck in the continuous manufacturing of monoclonal antibodies (mAbs). To overcome throughput limitations, two different continuous processes with a novel convective diffusive protein A membrane adsorber (MA) were investigated: the rapid cycling parallel multi-column chromatography (RC-PMCC) process and the rapid cycling simulated moving bed (RC-BioSMB) process. First, breakthrough curve experiments were performed to investigate the influence of the flow rate on the mAb dynamic binding capacity and to calculate the duration of the loading steps. In addition, customized control software was developed for an automated MA exchange in case of pressure increase due to membrane fouling to enable robust, uninterrupted, and continuous processing. Both processes were performed for 4 days with 0.61 g L-1 mAb-containing filtrate and process performance, product purity, productivity, and buffer consumption were compared. The mAb was recovered with a yield of approximately 90% and productivities of 1010 g L-1 d-1 (RC-PMCC) and 574 g L-1 d-1 (RC-BioSMB). At the same time, high removal of process-related impurities was achieved with both processes, whereas the buffer consumption was lower for the RC-BioSMB process. Finally, the attainable productivity for perfusion bioreactors of different sizes with suitable MA sizes was calculated to demonstrate the potential to operate both processes on a manufacturing scale with bioreactor volumes of up to 2000 L.


Assuntos
Anticorpos Monoclonais , Cricetulus , Membranas Artificiais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Adsorção , Células CHO , Reatores Biológicos , Proteína Estafilocócica A/química , Animais , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação
2.
J Sep Sci ; 47(12): e2400239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031845

RESUMO

The separation of cannabinoids from hemp materials is nowadays one of the most promising industrial applications of liquid-liquid chromatography (LLC). Despite various experimental research efforts to purify cannabinoids, there are currently few works on process modeling. Thus, this study aimed to explore a straightforward approach to model the LLC separation of cannabinoids from two hemp extracts with different compositions. The feed materials were simplified to mixtures of preselected key components (i.e., cannabidiol, tetrahydrocannabinol, cannabigerol, and cannabinol). The elution profiles of cannabinoids were simulated using the equilibrium-cell model with an empirical nonlinear correlation. The model parameters were derived from the elution profiles of single-solute pulse injections. For the validation of the proposed approach, LLC separations with the two hemp extracts were performed in descending mode with the solvent system composed of hexane/methanol/water 10/8/2 (v/v/v). The injected sample concentrations were gradually increased from 5 to 100 mg/mL. The results showed that the approach could describe reasonably well the elution behavior of the cannabinoids, with deviations of only 1-2 min between simulated and experimental elution times. However, to improve the prediction accuracy, the model parameters can be refitted to the elution profiles of 3-4 systematically selected pulse injections with specific hemp extracts.


Assuntos
Canabinoides , Cannabis , Extratos Vegetais , Cannabis/química , Canabinoides/análise , Canabinoides/isolamento & purificação , Canabinoides/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/análise , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão
3.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37671963

RESUMO

Eutectic systems design requires an in-depth understanding of their solid-liquid equilibria (SLE). Modeling SLE in eutectic systems has as prerequisites, the melting properties and activity coefficients of components in the liquid phase. Thus, due to the unavailable melting properties of thermally unstable substances, it is impossible to estimate their activity coefficients from experimental SLE data and model the SLE phase diagram of their eutectic systems. Here, we evaluate the activity coefficients of thermally unstable constituents in the liquid phase, which were calculated independent of their melting properties by correlating the SLE data of their cocrystals. Differential scanning calorimetry and powder x-ray diffraction were employed to obtain the SLE phase diagram of three eutectic systems, i.e., tetramethylammonium chloride/catechol, tetraethylammonium chloride/catechol, and betaine/catechol systems, and identify the formation of nine cocrystals. The non-random, two-liquid equation was used to calculate the activity coefficients of the components in the liquid phase. The substantial negative deviation from ideality in the three studied systems indicated strong hydrogen bonding interactions in the liquid solution. Furthermore, modeling ion-ion interactions in eutectic systems containing ionic constituents is of utmost importance for understanding their nonideality.

4.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234740

RESUMO

Deep eutectic solvents (DESs) are a class of green and tunable solvents that can be formed by mixing constituents having very low melting entropies and enthalpies. As types of materials that meet these requirements, plastic crystalline materials (PCs) with highly symmetrical and disordered crystal structures can be envisaged as promising DES constituents. In this work, three PCs, namely, neopentyl alcohol, pivalic acid, and neopentyl glycol, were studied as DES constituents. The solid-plastic transitions and melting properties of the pure PCs were studied using differential scanning calorimetry. The solid-liquid equilibrium phase diagrams of four eutectic systems containing the three PCs, i.e., L-menthol/neopentyl alcohol, L-menthol/pivalic acid, L-menthol/neopentyl glycol, and choline chloride/neopentyl glycol, were measured. Despite showing near-ideal behavior, the four studied eutectic systems exhibited depressions at the eutectic points, relative to the melting temperatures of the pure constituents, that were similar to or even larger than those of strongly nonideal eutectic systems. These findings highlight that a DES can be formed when PCs are used as constituents, even if the eutectic system is ideal.

5.
Anal Bioanal Chem ; 413(17): 4387-4396, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050388

RESUMO

The (semi)volatile fraction of Matricaria chamomilla L., an annual herbal plant from the family of Asteraceae, contains high quantities of sesquiterpenes and sesquiterpenoids. A method was developed to achieve isolation and separation of these compounds, using a combination of solvent assisted flavor evaporation (SAFE) and solid support-free liquid-liquid chromatography. The biphasic liquid solvent system n-heptane/ethyl acetate/methanol/water, 5/2/5/2 v/v/v/v (Arizona S) was elaborated as a suitable solvent system for the simultaneous separation of the target compounds. The lab-scale liquid-liquid chromatography separation performed in a countercurrent chromatography (CCC) column was successfully transferred to a semi-preparative centrifugal partition chromatography (CPC) column, which enabled the isolation of artemisia ketone, artemisia alcohol, α-bisabolone oxide A, and (E)-en-yn-dicycloether. α-Bisabolol oxide A and (Z)-en-yn-dicycloether co-eluted, but were successfully separated by subsequent size-exclusion chromatography (SEC). Similarly, spathulenol and α-bisabolol oxide B were obtained as a mixture, and were separated by means of column chromatography using silica gel as stationary phase. The isolated compounds were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS).


Assuntos
Cromatografia Líquida/métodos , Matricaria/química , Extratos Vegetais/química , Sesquiterpenos/isolamento & purificação , Centrifugação/métodos , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Sesquiterpenos/análise , Solventes/química
6.
Phytochem Anal ; 32(4): 482-494, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33015885

RESUMO

INTRODUCTION: Symphytum officinale L. (comfrey, Boraginaceae) is a cultivated or spontaneously growing medicinal plant that is traditionally used for the treatment of bone fractures, hematomas, muscle pains and joint pains. A wide range of topical preparations and dried roots for ex tempore applications are marketed in European drug stores or pharmacies. OBJECTIVE: The aim of this study was to perform the qualitative and quantitative analysis of pyrrolizidine alkaloids (PAs) and phenolic compounds in the hydroethanolic extracts of 16 commercial comfrey root batches purchased from 12 different European countries. METHODS: Liquid chromatography hyphenated with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used for the profiling of PAs and phenolic compounds, whereas LC-MS/MS and liquid chromatography with diode array detection (LC-DAD) were used for their quantification. RESULTS: 20 PAs (i.e. intermedine, lycopsamine, acetylintermedine, acetyllycopsamine, symphytine, symphytine-N-oxide), 17 phenolic compounds (i.e. caffeic and rosmarinic acids, rabdosiin, globoidnan A, globoidnan B) and 9 nonphenolic compounds (sugars, organic and fatty acids) were fully or partly annotated in the analysed samples. In addition, the quantitative analyses revealed that globoidnan B, rabdosiin and globoidnan A are new phenolic markers that can be used together with rosmarinic acid and PAs for the quality control of commercial comfrey root batches. CONCLUSIONS: This study brings new insights into the phytochemical complexity of S. officinale, revealing not only numerous toxic PAs, but also a significant number of valuable phenolic compounds that could contribute to the bioactivities of comfrey-based preparations.


Assuntos
Confrei , Alcaloides de Pirrolizidina , Ácidos Cafeicos , Cromatografia Líquida , Europa (Continente) , Lignanas , Extratos Vegetais , Raízes de Plantas , Espectrometria de Massas em Tandem
7.
Molecules ; 26(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299483

RESUMO

Hydrophobic deep eutectic solvents (DES) have recently been used as green alternatives to conventional solvents in several applications. In addition to their tunable melting temperature, the viscosity of DES can be optimized by selecting the constituents and molar ratio. This study examined the viscosity of 14 eutectic systems formed by natural substances over a wide range of temperatures and compositions. The eutectic systems in this study were classified as ideal or non-ideal based on their solid-liquid equilibria (SLE) data found in the literature. The eutectic systems containing constituents with cyclohexyl rings were considerably more viscous than those containing linear or phenyl constituents. Moreover, the viscosity of non-ideal eutectic systems was higher than that of ideal eutectic systems because of the strong intermolecular interactions in the liquid solution. At temperatures considerably lower than the melting temperature of the pure constituents, non-ideal and ideal eutectic systems with cyclohexyl constituents exhibited considerably high viscosity, justifying the kinetic limitations in crystallization observed in these systems. Overall, understanding the correlation between the molecular structure of constituents, SLE, and the viscosity of the eutectic systems will help in designing new, low-viscosity DES.

8.
Molecules ; 25(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121048

RESUMO

Eutectic systems offer a wide range of new (green) designer solvents for diverse applications. However, due to the large pool of possible compounds, selecting compounds that form eutectic systems is not straightforward. In this study, a simple approach for preselecting possible candidates from a pool of substances sharing the same chemical functionality was presented. First, the melting entropy of single compounds was correlated with their molecular structure to calculate their melting enthalpy. Subsequently, the eutectic temperature of the screened binary systems was qualitatively predicted, and the systems were ordered according to the depth of the eutectic temperature. The approach was demonstrated for six hydrophobic eutectic systems composed of L-menthol and monocarboxylic acids with linear and cyclic structures. It was found that the melting entropy of compounds sharing the same functionality could be well correlated with their molecular structures. As a result, when the two acids had a similar melting temperature, the melting enthalpy of a rigid acid was found to be lower than that of a flexible acid. It was demonstrated that compounds with more rigid molecular structures could form deeper eutectics. The proposed approach could decrease the experimental efforts required to design deep eutectic solvents, particularly when the melting enthalpy of pure components is not available.


Assuntos
Mentol/química , Modelos Químicos , Solventes/química
9.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242576

RESUMO

Deep eutectic solvents (DESs) are potential alternatives to many conventional solvents in process applications. Knowledge and understanding of solid-liquid equilibria (SLE) are essential to characterize, design, and select a DES for a specific application. The present study highlights the main aspects that should be taken into account to yield better modeling, prediction, and understanding of SLE in DESs. The work is a comprehensive study of the parameters required for thermodynamic modeling of SLE-i.e., the melting properties of pure DES constituents and their activity coefficients in the liquid phase. The study is carried out for a hypothetical binary mixture as well as for selected real DESs. It was found that the deepest eutectic temperature is possible for components with low melting enthalpies and strong negative deviations from ideality in the liquid phase. In fact, changing the melting enthalpy value of a component means a change in the difference between solid and liquid reference state chemical potentials which results in different values of activity coefficients, leading to different interpretations and even misinterpretations of interactions in the liquid phase. Therefore, along with reliable modeling of liquid phase non-ideality in DESs, accurate estimation of the melting properties of their pure constituents is of clear significance in understanding their SLE behavior and for designing new DES systems.


Assuntos
Modelos Teóricos , Transição de Fase , Solventes/química , Algoritmos
10.
J Nat Prod ; 79(4): 1160-4, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27010489

RESUMO

In a previous study, two highly potent yet unidentified odorants were detected that were present at trace levels in the volatile fraction of Boswellia sacra gum resin. These two compounds were isolated semipreparatively from the volatile oil by a sensory-guided fractionation process involving microscale bulb-to-bulb distillation, countercurrent chromatography, and preparative gas chromatography. In this manner, the two oxygenated sesquiterpenes could be identified as rotundone (1) and mustakone (2). Compound 2 is described for the first time as a potent odorant with a very low odor threshold.


Assuntos
Boswellia/química , Franquincenso/química , Cetonas/isolamento & purificação , Óleos Voláteis/química , Sesquiterpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Alemanha , Estrutura Molecular , Odorantes/análise , Resinas Vegetais/química , Sesquiterpenos/química
11.
J Chromatogr A ; 1722: 464888, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613932

RESUMO

Liquid-liquid chromatography (LLC) is a separation technique that utilizes a biphasic solvent system as the mobile and stationary phases. The components are separated solely due to their different distributions between the two liquid phases. Gradient change in the mobile phase composition during the chromatographic process is a powerful method for improving the resolution of separation or shortening the process time. Gradient elution readily applies to LLC with biphasic solvent systems in which the stationary phase composition remains nearly constant when the mobile phase composition changes. This work proposes a model-based approach to optimize gradients in LLC and circumvent tedious trial-and-error experiments. The solutes' distribution constant depends on the mobile phase composition. Thus, the distribution constants were described as a function of the content of one of the solvents (= modifier) in the mobile phase. The dispersive and mass-transfer effects in the tubing and the column are modeled with a stage model. Only a few experiments are required to determine the model parameters. After the validation of the model and its parameters, the model can be used for LLC gradient optimization. The proposed approach was demonstrated for a gradient LLC separation of a mixture of four cannabinoids. Two different gradient shapes, one-step and linear gradient, were considered. For a pre-selected minimal purity requirement, the gradient was optimized for maximum process efficiency, defined as the product of productivity and yield. An experiment conducted with the optimized gradient conditions was in good agreement with the simulation, showing the potential of the proposed method.


Assuntos
Canabinoides , Canabinoides/isolamento & purificação , Canabinoides/química , Canabinoides/análise , Cromatografia Líquida/métodos , Solventes/química , Modelos Químicos
12.
Antibiotics (Basel) ; 13(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927152

RESUMO

Hemp (Cannabis sativa L.) has been used for millennia as a rich source of food and fibers, whereas hemp flowers have only recently gained an increased market interest due to the presence of cannabinoids and volatile terpenes. Currently, the hemp flower processing industry predominantly focuses on either cannabinoid or terpene extraction. In an attempt to maximize the valorization of hemp flowers, the current study aimed to evaluate the phytochemical composition and antimicrobial properties of several extracts obtained from post-distillation by-products (e.g., spent material, residual distillation water) in comparison to the essential oil and total extract obtained from unprocessed hemp flowers. A terpene analysis of the essential oil revealed 14 monoterpenes and 35 sesquiterpenes. The cannabinoid profiling of extracts showed seven acidic precursors and 14 neutral derivatives, with cannabidiol (CBD) reaching the highest concentration (up to 16 wt.%) in the spent material extract. The antimicrobial assessment of hemp EO, cannabinoid-containing extracts, and single compounds (i.e., CBD, cannabigerol, cannabinol, and cannabichromene) against a panel of 20 microbial strains demonstrated significant inhibitory activities against Gram-positive bacteria, Helicobacter pylori, and Trichophyton species. In conclusion, this work suggests promising opportunities to use cannabinoid-rich materials from hemp flower processing in functional foods, cosmetics, and pharmaceuticals with antimicrobial properties.

13.
Heliyon ; 9(2): e13030, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747572

RESUMO

Supercritical fluid extraction from hops (Humulus lupulus L.) can be used to extract essential oil for the flavoring of beer. With a special focus on the oil composition being linked to the hop aroma, the influence of pressure and temperature on the extraction kinetics of seven oil components (ß-myrcene, α-humulene, ß-caryophyllene, 2-methylbutyl isobutyrate, undecanone, linalool, and α-pinene) is analyzed and modeled in this article. Supercritical CO2 extraction from hop pellets was conducted at pressure-temperature combinations of 90/100/110 bar and 40/45/50 °C. The extract composition over time, analyzed by gas chromatography, was used for the parameterization of two existing mechanistic models: an internal-mass-transfer-control (IMTC), and a broken-and-intact-cells (BIC) model. The IMTC model was found to effectively describe most extraction kinetics and hence applied in this study. In contrast to previous studies, the IMTC model parameters were not only fitted to individual extraction curves from different experiments but also correlated to temperature and pressure as a further step towards model-based prediction. Using the parameterized model, the extract composition was predicted at 95 bar/48 °C, 105 bar/42 °C, and 105 bar/48 °C. Extraction yields were found to be higher at lower temperatures and higher pressures in general. The sensitivity towards pressure was observed to differ between components and to be particularly higher for ß-myrcene compared with α-humulene. Changes of the essential oil composition with a variation in pressure and temperature were predicted correctly by the model with a mean relative deviation from experimental data of 11.7% (min. 1.2%, max. 36.2%).

14.
Food Chem ; 406: 135090, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36462355

RESUMO

Black pepper (P. nigrum L.) is considered one of the most valuable spices and a promising candidate in natural product research. In this study, the influence of different combinations of pressures (100-300 bar) and temperatures (40-60 °C) on the supercritical CO2 (SC-CO2) recovery of several key compounds from black pepper was evaluated systematically. The extraction curves showed that terpenes were recovered in a short time under all studied conditions. In contrast, higher pressure values were required to extract piperamides efficiently. Furthermore, the differences in the extraction kinetics of piperine, piperettine, pellitorine, guineensine, and N-isobutyl-2,4,14-eicosatrienamide were linked with several structural features, such as the nature of the amine group or the terminal part of the fatty acid. The data from the isocratic experiments represented the starting point for designing a two-step pressure gradient SC-CO2 process in which one terpene-rich and one piperamide-rich product were successively obtained.


Assuntos
Piper nigrum , Piper nigrum/química , Dióxido de Carbono/química , Terpenos , Especiarias , Extratos Vegetais/química
15.
J Chromatogr A ; 1708: 464361, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722348

RESUMO

In liquid-liquid chromatography (LLC), mixture components are separated due to their different distribution between the phases of a biphasic liquid system composed of three or four solvents. LLC separations are typically modeled assuming that only the solutes distribute between the two liquid phases and their distribution can be described with a concentration-independent distribution constant. With increasing solute concentration, the physicochemical properties of the biphasic system change, and the distribution of the solutes becomes a function of their concentration. However, the experimental determination of liquid-liquid equilibria in multicomponent systems is time-intensive, and its prediction using thermodynamic models is often not sufficiently accurate for process design purposes. Thus, in this work, we propose a simple approach to model and simulate LLC separations in the nonlinear (concentration-dependent) range of the solutes' distribution equilibria, namely cannabidiol (CBD) and cannabigerol (CBG). Using the inverse method, the distribution equilibrium equation parameters were estimated from pulse injection experiments of single solutes at concentrations ranging from 1 to 100 mg/mL and 1-50 mg/mL for CBD and CBG, respectively. The obtained parameters were then successfully used to predict the elution profiles of binary mixtures of different compositions at 40 mg/mL total cannabinoid concentration. The approach was demonstrated and validated for CBD and CBG as model compounds and n-hexane/methanol/water 10/7.5/2.5 (v/v/v) as the biphasic solvent system. It should be noted that the applicability of the proposed approach is system-dependent, and hence, it should be evaluated for each separation task individually.


Assuntos
Canabidiol , Solventes , Metanol , Termodinâmica , Cromatografia Líquida
16.
J Chromatogr A ; 1691: 463824, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36709549

RESUMO

Liquid-liquid chromatography (LLC) is a technique in which the separation of mixture components is achieved due to their different distribution between the two phases of a pre-equilibrated biphasic solvent system. In this work, the LLC operation in the nonlinear range of the distribution isotherm was systematically examined for the first time. The influence of the feed concentration on the elution profiles of a model component (cannabidiol, CBD) was studied in three LLC units of different types and sizes ranging from ∼20 mL to ∼2 L. A series of pulse injections with CBD concentrations varying from 1 to 300 mg/mL was performed with n-hexane/methanol/water 5/4/1 (v/v/v) in descending mode (lower phase as the mobile phase). The elution profiles were simulated using the equilibrium-cell model and an anti-Langmuir-like equation for describing the CBD distribution equilibria. The distribution equilibria equation parameters were fitted to the CBD elution profiles using the peak fitting method. The model was validated and provided good predictions of the CBD elution profiles in the entire concentration range for all three LLC units.


Assuntos
Distribuição Contracorrente , Metanol , Distribuição Contracorrente/métodos , Cromatografia Líquida/métodos , Solventes/química , Água/química , Cromatografia Líquida de Alta Pressão
17.
J Pharm Biomed Anal ; 234: 115529, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364450

RESUMO

Petasites hybridus L. (butterbur, Asteraceae) is a well-known medicinal plant traditionally used as a remedy for neurological, respiratory, cardiovascular, and gastrointestinal disorders. Eremophilane-type sesquiterpenes (petasins) are considered to be the major bioactive constituents of butterbur. However, efficient methods to isolate high-purity petasins in sufficient amounts for further analytical and biological testing are lacking. In this study, various sesquiterpenes were separated from a methanol rootstock extract of P. hybridus with liquid-liquid chromatography (LLC). The appropriate biphasic solvent system was selected using the predictive thermodynamic model COSMO-RS and shake-flask experiments. After the selection of the feed (extract) concentration and operating flow rate, a batch LLC experiment was performed with n-hexane/ethyl acetate/methanol/water 5/1/5/1 (v/v/v/v). For those LLC fractions containing petasin derivatives with purities < 95%, a preparative high-performance liquid chromatography purification step followed. All isolated compounds were identified by state-of-the-art spectroscopic methods, i.e., liquid chromatography coupled with high-resolution tandem mass spectrometry and nuclear magnetic resonance techniques. As a result, six compounds were obtained, namely 8ß-hydroxyeremophil-7(11)-en-12,8-olide, 2-[(angeloyl)oxy]eremophil-7(11)-en-12,8-olide, 8α/ß-H-eremophil-7(11)-en-12,8-olide, neopetasin, petasin, and isopetasin. The isolated petasins can be further used as reference materials for standardization and pharmacological evaluation.


Assuntos
Asteraceae , Petasites , Sesquiterpenos , Petasites/química , Espectrometria de Massas em Tandem , Metanol , Sesquiterpenos/análise , Cromatografia Líquida , Asteraceae/química , Espectroscopia de Ressonância Magnética , Extratos Vegetais/farmacologia
18.
Foods ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569140

RESUMO

Brewing espresso coffee (EC) is considered a craft and, by some, even an art. Therefore, in this study, we systematically investigated the influence of coffee grinding, water flow rate, and temperature on the extraction kinetics of representative EC components, employing a central composite experimental design. The extraction kinetics of trigonelline, caffeine, 5-caffeoylquinic acid (5-CQA), and Total Dissolved Solids (TDS) were determined by collecting and analyzing ten consecutive fractions during the EC brewing process. From the extraction kinetics, the component masses in the cup were calculated for Ristretto, Espresso, and Espresso Lungo. The analysis of the studied parameters revealed that flow rate had the strongest effect on the component mass in the cup. The intensity of the flow rate influence was more pronounced at finer grindings and higher water temperatures. Overall, the observed influences were minor compared to changes resulting from differences in total extracted EC mass.

19.
Antioxidants (Basel) ; 12(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36829802

RESUMO

Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.

20.
J Ethnopharmacol ; 293: 115263, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427728

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Petasites (butterbur, Asteraceae) species have been used since Ancient times in the traditional medicine of Asian and European countries to treat central nervous system (migraine), respiratory (asthma, allergic rhinitis, bronchitis, spastic cough), cardiovascular (hypertension), gastrointestinal (ulcers) and genitourinary (dysmenorrhea) disorders. AIM OF THE REVIEW: This study summarized and discussed the traditional uses, phytochemical, pharmacological and toxicological aspects of Petasites genus. MATERIALS AND METHODS: A systematic search of Petasites in online databases (Scopus, PubMed, ScienceDirect, Google Scholar) was performed, with the aim to find the phytochemical, toxicological and bioactivity studies. The Global Biodiversity Information Facility, Plants of the World Online, World Flora Online and The Plant List databases were used to describe the taxonomy and geographical distribution. RESULTS: The detailed phytochemistry of the potentially active compounds of Petasites genus (e.g. sesquiterpenes, pyrrolizidine alkaloids, polyphenols and essential oils components) was presented. The bioactivity studies (cell-free, cell-based, animal, and clinical) including the traditional uses of Petasites (e.g. anti-spasmolytic, hypotensive, anti-asthmatic activities) were addressed and followed by discussion of the main pharmacokinetical and toxicological issues related to the administration of butterbur-based formulations. CONCLUSIONS: This review provides a complete overview of the Petasites geographical distribution, traditional use, phytochemistry, bioactivity, and toxicity. More than 200 different sesquiterpenes (eremophilanes, furanoeremophilanes, bakkenolides), 50 phenolic compounds (phenolic acids, flavonoids, lignans) and volatile compounds (monoterpenes, sesquiterpenes) have been reported within the genus. Considering the phytochemical complexity and the polypharmacological potential, there is a growing research interest to extend the current therapeutical applications of Petasites preparations (anti-migraine, anti-allergic) to other human ailments, such as central nervous system, cardiovascular, malignant or microbial diseases. This research pathway is extremely important, especially in the recent context of the pandemic situation, when there is an imperious need for novel drug candidates.


Assuntos
Etnobotânica , Petasites , Animais , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Fitoterapia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA