Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 163(4): 796-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544933

RESUMO

Two studies by Meyer et al. and Wang et al. demonstrate a role for m(6)A modification of mRNA in stimulating translation initiation. These findings add to the growing number of diverse mechanisms for translation initiation in eukaryotes.

2.
Mol Cell ; 68(4): 808-820.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29129640

RESUMO

Stress granules are mRNA-protein assemblies formed from nontranslating mRNAs. Stress granules are important in the stress response and may contribute to some degenerative diseases. Here, we describe the stress granule transcriptome of yeast and mammalian cells through RNA-sequencing (RNA-seq) analysis of purified stress granule cores and single-molecule fluorescence in situ hybridization (smFISH) validation. While essentially every mRNA, and some noncoding RNAs (ncRNAs), can be targeted to stress granules, the targeting efficiency varies from <1% to >95%. mRNA accumulation in stress granules correlates with longer coding and UTR regions and poor translatability. Quantifying the RNA-seq analysis by smFISH reveals that only 10% of bulk mRNA molecules accumulate in mammalian stress granules and that only 185 genes have more than 50% of their mRNA molecules in stress granules. These results suggest that stress granules may not represent a specific biological program of messenger ribonucleoprotein (mRNP) assembly, but instead form by condensation of nontranslating mRNPs in proportion to their length and lack of association with ribosomes.


Assuntos
Grânulos Citoplasmáticos/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcriptoma/fisiologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Humanos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
3.
Mol Cell ; 54(4): 547-58, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24856220

RESUMO

The proper processing, export, localization, translation, and degradation of mRNAs are necessary for regulation of gene expression. These processes are controlled by mRNA-specific regulatory proteins, noncoding RNAs, and core machineries common to most mRNAs. These factors bind the mRNA in large complexes known as messenger ribonucleoprotein particles (mRNPs). Herein, we review the components of mRNPs, how they assemble and rearrange, and how mRNP composition differentially affects mRNA biogenesis, function, and degradation. We also describe how properties of the mRNP "interactome" lead to emergent principles affecting the control of gene expression.


Assuntos
Células Eucarióticas/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Modelos Genéticos , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Mol Cell ; 39(6): 950-62, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864040

RESUMO

Translational control is frequently exerted at the stage of mRNA recruitment to the initiating ribosome. We have reconstituted mRNA recruitment to the 43S preinitiation complex (PIC) using purified S. cerevisiae components. We show that eIF3 and the eIF4 factors not only stabilize binding of mRNA to the PIC, they also dramatically increase the rate of recruitment. Although capped mRNAs require eIF3 and the eIF4 factors for efficient recruitment to the PIC, uncapped mRNAs can be recruited in the presence of eIF3 alone. The cap strongly inhibits this alternative recruitment pathway, imposing a requirement for the eIF4 factors for rapid and stable binding of natural mRNA. Our data suggest that the 5' cap serves as both a positive and negative element in mRNA recruitment, promoting initiation in the presence of the canonical group of mRNA handling factors while preventing binding to the ribosome via an aberrant, alternative pathway requiring only eIF3.


Assuntos
Regulação Fúngica da Expressão Gênica , Guanosina/análogos & derivados , Iniciação Traducional da Cadeia Peptídica/fisiologia , Capuzes de RNA/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistema Livre de Células/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Guanosina/metabolismo , Cinética , Conformação de Ácido Nucleico , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Análogos de Capuz de RNA/fisiologia , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 289(3): 1704-22, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24285537

RESUMO

eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
RNA ; 19(2): 191-207, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23236192

RESUMO

Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Fator de Iniciação 4A em Eucariotos/genética , Fatores de Iniciação em Eucariotos/genética , Modelos Moleculares , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Polirribossomos/química , Polirribossomos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Deleção de Sequência
7.
Proc Natl Acad Sci U S A ; 107(24): 10854-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534490

RESUMO

After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.


Assuntos
Trifosfato de Adenosina/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Fatores de Alongamento de Peptídeos/química , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Methods Mol Biol ; 2209: 235-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201473

RESUMO

mRNA binding proteins regulate gene expression by controlling the processing, localization, decay, and translation of messenger RNAs (mRNAs). To fully understand these mechanisms of posttranscriptional gene regulation, it is necessary to identify the complete set of mRNA binding proteins. In recent years, several assays have been developed to accomplish this goal in a wide variety of organisms. This work describes a method for the systematic identification of mRNA binding proteins in Saccharomyces cerevisiae. This method applies in vivo UV cross-linking, affinity pull-down of polyA(+) mRNAs, and analysis by mass spectrometry to identify proteins that directly bind to mRNAs.


Assuntos
Espectrometria de Massas/métodos , RNA Fúngico/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Regulação Fúngica da Expressão Gênica , Ligação Proteica , Saccharomyces cerevisiae/química
9.
Methods Enzymol ; 430: 111-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913637

RESUMO

To facilitate the mechanistic dissection of eukaryotic translation initiation we have reconstituted the steps of this process using purified Saccharomyces cerevisiae components. This system provides a bridge between biochemical studies in vitro and powerful yeast genetic techniques, and complements existing reconstituted mammalian translation systems (Benne and Hershey, 1978; Pestova and Hellen, 2000; Pestova et al., 1998; Trachsel et al., 1977). The following describes methods for synthesizing and purifying the components of the yeast initiation system and assays useful for its characterization.


Assuntos
Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 1 em Eucariotos/isolamento & purificação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Fator de Iniciação 2 em Eucariotos/metabolismo , Metionina/metabolismo , Metionina tRNA Ligase/isolamento & purificação , Metionina tRNA Ligase/metabolismo , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA Ribossômico/isolamento & purificação , RNA Ribossômico/metabolismo , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Methods Mol Biol ; 1421: 153-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965264

RESUMO

The maturation, localization, stability, and translation of messenger RNAs (mRNAs) are regulated by a wide variety of mRNA-binding proteins. Identification of the complete set of mRNA-binding proteins is a key step in understanding the regulation of gene expression. Herein, we describe a method for identifying yeast mRNA-binding proteins in a systematic manner using UV crosslinking, purification of polyA(+) mRNAs under denaturing conditions, and mass spectrometry to identify covalently bound proteins.


Assuntos
Proteínas Fúngicas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Leveduras/metabolismo , Proteínas Fúngicas/análise , Espectrometria de Massas/métodos , Poli A/metabolismo , Proteínas de Ligação a RNA/análise , Raios Ultravioleta , Leveduras/química , Leveduras/crescimento & desenvolvimento
11.
Chem Biol ; 11(11): 1483-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15555998

RESUMO

We have created a molecular switch by the in vitro recombination of nonhomologous genes and subjecting the recombined genes to evolutionary pressure. The gene encoding TEM1 beta-lactamase was circularly permuted in a random fashion and subsequently randomly inserted into the gene encoding Escherichia coli maltose binding protein. From this library, a switch (RG13) was identified in which its beta-lactam hydrolysis activity was compromised in the absence of maltose but increased 25-fold in the presence of maltose. Upon removal of maltose, RG13's catalytic activity returned to its premaltose level, illustrating that the switching is reversible. The modularity of RG13 was demonstrated by increasing maltose affinity while preserving switching activity. RG13 gave rise to a novel cellular phenotype, illustrating the potential of molecular switches to rewire the cellular circuitry.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas Periplásmicas de Ligação/genética , Engenharia de Proteínas , Recombinação Genética , beta-Lactamases/genética , Animais , Genes de Troca , Modelos Moleculares , Homologia de Sequência
12.
Methods Enzymol ; 559: 111-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26096506

RESUMO

Isolation of highly purified recombinant protein is essential for a wide range of biochemical and biophysical assays. Affinity purification in which a tag is fused to the desired protein and then specifically bound to an affinity column is a widely used method for obtaining protein of high purity. Many of these methods have the drawbacks of either leaving the recombinant tag attached to the protein or requiring the addition of a protease which then must be removed by further chromatographic steps. The fusion of a self-cleaving intein sequence followed by a chitin-binding domain (CBD) allows for one-step chromatographic purification of an untagged protein through the thiol-catalyzed cleavage of the intein sequence from the desired protein. The affinity purification is highly specific and can yield pure protein without any undesired N- or C-terminal extensions. This protocol is based on the IMPACT™-System (intein mediated purification with an affinity chitin-binding tag) marketed by New England Biolabs.


Assuntos
Quitina/química , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Inteínas , Proteínas/isolamento & purificação , Bioquímica/métodos , Catálise , Escherichia coli/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Compostos de Sulfidrila/química , Temperatura
13.
Methods Mol Biol ; 1259: 35-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25579578

RESUMO

mRNA binding proteins regulate gene expression by controlling the processing, localization, decay, and translation of messenger RNAs (mRNAs). To fully understand this process, it is necessary to identify the complete set of mRNA binding proteins. This work describes a method for the systematic identification of yeast mRNA binding proteins. This method applies in vivo UV cross-linking, affinity pull-down of polyA(+) mRNAs, and analysis by mass spectrometry to identify proteins that directly bind to mRNAs.


Assuntos
Poli A/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Fúngicas/metabolismo , Ligação Proteica
14.
Methods Enzymol ; 541: 179-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24674072

RESUMO

The characterization of protein-nucleic acid interactions is necessary for the study of a wide variety of biological processes. One straightforward and widely used approach to this problem is the electrophoretic mobility shift assay (EMSA), in which the binding of a nucleic acid to one or more proteins changes its mobility through a nondenaturing gel matrix. Usually, the mobility of the nucleic acid is reduced, but examples of increased mobility do exist. This type of assay can be used to investigate the affinity of the interaction between the protein and nucleic acid, the specificity of the interaction, the minimal binding site, and the kinetics of the interaction. One particular advantage of EMSA is the ability to analyze multiple proteins, or protein complexes, binding to nucleic acids. This assay is relatively quick and easy and utilizes equipment available in most laboratories; however, there are many variables that can only be determined empirically; therefore, optimization is necessary and can be highly dependent upon the system. The protocol described here is for the poly(A)-binding protein (PABP) binding to an unstructured RNA probe of 43 bases. While this may be a useful protocol for some additional assays, it is recommended that both reaction conditions and gel running conditions be tailored to the individual interaction to be probed.


Assuntos
DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas/metabolismo , RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/instrumentação , Proteínas/análise
15.
Methods Enzymol ; 536: 95-108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423270

RESUMO

Expressed protein ligation (EPL) combines two methods to ligate a synthetic peptide to a recombinant protein. Native chemical ligation (NCL) is a process in which two synthesized peptides are ligated by reaction of a C-terminal thioester on one peptide with an N-terminal cysteine residue of another protein. The chemistry of inteins, self-excising protein fragments that ligate the surrounding protein back together, creates isolatable intermediates with the two chemical groups necessary for NCL, a C-terminal thioester and an N-terminal cysteine residue. This technique allows for the incorporation of synthetic amino acids, radiolabeled amino acids, and fluorescent moieties at specific locations in a protein. It has the advantage of allowing attachment of such synthetic peptides to the termini of a recombinant protein, allowing for the synthesis of large proteins with modified amino acids. This technique utilizes the IMPACT(TM)-System created by New England Biolabs, who provide a variety of vectors in which the multicloning site is directly upstream of an intein sequence fused to a chitin-binding domain (CBD). The CBD binds tightly and specifically to chitin beads, allowing for an efficient one-step purification. This step can be used to obtain highly purified proteins (see Protein Affinity Purification using Intein/Chitin Binding Protein Tags). After purification of the recombinant protein, cleavage from the intein is achieved through the addition of a reactive thiol compound, usually sodium 2-mercaptoethanesulfonate (MESNA) (see also Proteolytic affinity tag cleavage). This reaction creates a protein with a C-terminal thioester that can then react with a peptide containing an N-terminal cysteine residue, ligating the two proteins via a peptide bond.


Assuntos
Cisteína/química , Quitina/química , Reagentes de Ligações Cruzadas/química , Ésteres , Inteínas , Mesna/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
16.
Nat Struct Mol Biol ; 20(1): 127-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222640

RESUMO

Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and rRNA-metabolism factors. These proteins show dynamic subcellular localization during stress, including assembly into stress granules and processing bodies (P bodies). Cross-linking and immunoprecipitation (CLIP) analyses of the P-body components Pat1, Lsm1, Dhh1 and Sbp1 identified sites of interaction on specific mRNAs, revealing positional binding preferences and co-assembly preferences. When taken together, this work defines the major yeast mRNP proteins, reveals widespread changes in their subcellular location during stress and begins to define assembly rules for P-body mRNPs.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico
17.
J Biol Chem ; 283(41): 27345-27349, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18593708

RESUMO

Start codon selection is a key step in translation initiation as it sets the reading frame for decoding. Two eukaryotic initiation factors, eIF1 and eIF1A, are key actors in this process. Recent work has elucidated many details of the mechanisms these factors use to control start site selection. eIF1 prevents the irreversible GTP hydrolysis that commits the ribosome to initiation at a particular codon. eIF1A both promotes and inhibits commitment through the competing influences of its two unstructured termini. Both factors perform their tasks through a variety of interactions with other components of the initiation machinery, in many cases mediated by the unstructured regions of the two proteins.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Ribossomos/metabolismo , Animais , Humanos , Hidrólise
18.
Genes Dev ; 21(10): 1217-30, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17504939

RESUMO

Selection of the AUG start codon is a key step in translation initiation requiring hydrolysis of GTP in the eIF2*GTP*Met-tRNA(i)(Met) ternary complex (TC) and subsequent P(i) release from eIF2*GDP*P(i). It is thought that eIF1 prevents recognition of non-AUGs by promoting scanning and blocking P(i) release at non-AUG codons. We show that Sui(-) mutations in Saccharomyces cerevisiae eIF1, which increase initiation at UUG codons, reduce interaction of eIF1 with 40S subunits in vitro and in vivo, and both defects are diminished in cells by overexpressing the mutant proteins. Remarkably, Sui(-) mutation ISQLG(93-97)ASQAA (abbreviated 93-97) accelerates eIF1 dissociation and P(i) release from reconstituted preinitiation complexes (PICs), whereas a hyperaccuracy mutation in eIF1A (that suppresses Sui(-) mutations) decreases the eIF1 off-rate. These findings demonstrate that eIF1 dissociation is a critical step in start codon selection, which is modulated by eIF1A. We also describe Gcd(-) mutations in eIF1 that impair TC loading on 40S subunits or destabilize the multifactor complex containing eIF1, eIF3, eIF5, and TC, showing that eIF1 promotes PIC assembly in vivo beyond its important functions in AUG selection.


Assuntos
Códon de Iniciação/fisiologia , Fator de Iniciação 1 em Eucariotos/metabolismo , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Códon de Iniciação/genética , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 1 em Eucariotos/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética
19.
EMBO J ; 26(6): 1602-14, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17332751

RESUMO

Translation initiation factor eIF1A stimulates preinitiation complex (PIC) assembly and scanning, but the molecular mechanisms of its functions are not understood. We show that the F131A,F133A mutation in the C-terminal tail (CTT) of eIF1A impairs recruitment of the eIF2-GTP-Met-tRNA(i)(Met) ternary complex to 40S subunits, eliminating functional coupling with eIF1. Mutating residues 17-21 in the N-terminal tail (NTT) of eIF1A also reduces PIC assembly, but in a manner rescued by eIF1. Interestingly, the 131,133 CTT mutation enhances initiation at UUG codons (Sui(-) phenotype) and decreases leaky scanning at AUG, while the NTT mutation 17-21 suppresses the Sui(-) phenotypes of eIF5 and eIF2beta mutations and increases leaky scanning. These findings and the opposite effects of the mutations on eIF1A binding to reconstituted PICs suggest that the NTT mutations promote an open, scanning-conducive conformation of the PIC, whereas the CTT mutations 131,133 have the reverse effect. We conclude that tight binding of eIF1A to the PIC is an important determinant of AUG selection and is modulated in opposite directions by residues in the NTT and CTT of eIF1A.


Assuntos
Códon de Iniciação/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fator de Iniciação 1 em Eucariotos/genética , Mutagênese , Mutação de Sentido Incorreto/genética , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell Proteomics ; 3(9): 934-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15240823

RESUMO

We developed a method to co-express protein pairs from collections of otherwise identical Escherichia coli plasmids expressing different ORFs by incorporating a 61-nucleotide sequence (LINK) into the plasmid to allow generation of tandem plasmids. Tandem plasmids are formed in a ligation-independent manner, propagate efficiently, and produce protein pairs in high quantities. This greatly facilitates co-expression for structural genomics projects that produce thousands of clones bearing identical origins and antibiotic markers.


Assuntos
Proteômica/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Animais , Sequência de Bases , DNA Complementar/genética , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos , Fases de Leitura Aberta , Plasmídeos/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA