Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378997

RESUMO

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Assuntos
Albuminas , Túbulos Renais Proximais , Albuminas/metabolismo , Transporte Biológico , Endocitose/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo
2.
Am J Physiol Renal Physiol ; 327(1): F103-F112, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779750

RESUMO

α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.


Assuntos
alfa-Globulinas , Rim , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Taxa de Filtração Glomerular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Camundongos , Heme Oxigenase-1/metabolismo , Ratos , Ratos Sprague-Dawley , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Distribuição Tecidual
3.
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460476

RESUMO

Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.


Assuntos
Anticorpos Monoclonais , Fígado , Ratos , Camundongos , Animais , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Fígado/metabolismo , Rim
4.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36626167

RESUMO

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Assuntos
Diabetes Mellitus Tipo 2 , Exenatida , Rim , Animais , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Peptídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(11): 6086-6091, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123080

RESUMO

Recombinant immunotoxins (RITs) are chimeric proteins composed of an Fv and a protein toxin being developed for cancer treatment. The Fv brings the toxin to the cancer cell, but most of the RITs do not reach the tumor and are removed by other organs. To identify cells responsible for RIT removal, and the pathway by which RITs reach these cells, we studied SS1P, a 63-kDa RIT that targets mesothelin-expressing tumors and has a short serum half-life. The major organs that remove RIT were identified by live mouse imaging of RIT labeled with FNIR-Z-759. Cells responsible for SS1P removal were identified by immunohistochemistry and intravital two-photon microscopy of kidneys of rats. The primary organ of SS1P removal is kidney followed by liver. In the kidney, SS1P passes through the glomerulus, is taken up by proximal tubular cells, and transferred to lysosomes. In the liver, macrophages are involved in removal. The short half-life of SS1P is due to its very rapid filtration by the kidney followed by degradation in proximal tubular cells of the kidney. In mice treated with SS1P, proximal tubular cells are damaged and albumin in the urine is increased. SS1P uptake by kidney is reduced by coadministration of l-lysine. Our data suggests that l-lysine administration to humans might prevent SS1P-mediated kidney damage, reduce albumin loss in urine, and alleviate capillary leak syndrome.


Assuntos
Albuminúria/patologia , Anticorpos Monoclonais/farmacocinética , Síndrome de Vazamento Capilar/patologia , Imunotoxinas/farmacocinética , Túbulos Renais Proximais/efeitos dos fármacos , Albuminúria/induzido quimicamente , Albuminúria/prevenção & controle , Albuminúria/urina , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/toxicidade , Síndrome de Vazamento Capilar/induzido quimicamente , Síndrome de Vazamento Capilar/prevenção & controle , Síndrome de Vazamento Capilar/urina , Modelos Animais de Doenças , Feminino , Corantes Fluorescentes/química , Meia-Vida , Humanos , Imunotoxinas/administração & dosagem , Imunotoxinas/química , Imunotoxinas/toxicidade , Microscopia Intravital , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/diagnóstico por imagem , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Lisina/administração & dosagem , Mesotelina , Camundongos , Microscopia de Fluorescência , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/toxicidade , Eliminação Renal/efeitos dos fármacos , Albumina Sérica/análise , Albumina Sérica/metabolismo , Coloração e Rotulagem
6.
Am J Physiol Renal Physiol ; 320(5): F671-F682, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682441

RESUMO

The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry. The advanced imaging capabilities of the center are made available to renal researchers worldwide via collaborations and a unique fellowship program. Center outreach is accomplished through an enrichment core that oversees a seminar series, an informational website, and a biennial workshop featuring hands-on training from members of the Indiana O'Brien Center and imaging experts from around the world.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Microscopia Intravital , Nefropatias/patologia , Rim/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Nefrologia , Animais , Difusão de Inovações , Humanos , Interpretação de Imagem Assistida por Computador , Indiana , Cooperação Internacional , Rim/fisiopatologia , Nefropatias/fisiopatologia , Comunicação Acadêmica
7.
Am J Physiol Renal Physiol ; 320(1): F114-F129, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283642

RESUMO

Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/metabolismo , Fígado/metabolismo , Receptores Fc/metabolismo , Insuficiência Renal Crônica/metabolismo , Albumina Sérica/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Túbulos Renais Proximais/fisiopatologia , Lisina , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Carbamilação de Proteínas , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Fatores de Tempo , Difração de Raios X
8.
Curr Opin Crit Care ; 26(6): 549-555, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002974

RESUMO

PURPOSE OF REVIEW: Acute kidney injury (AKI) is common and associated with high patient mortality, and accelerated progression to chronic kidney disease. Our ability to diagnose and stratify patients with AKI is paramount for translational progress. Unfortunately, currently available methods have major pitfalls. Serum creatinine is an insensitive functional biomarker of AKI, slow to register the event and influenced by multiple variables. Cystatin C, a proposed alternative, requires long laboratory processing and also lacks specificity. Other techniques are either very cumbersome (inuline, iohexol) or involve administration of radioactive products, and are therefore, not applicable on a large scale. RECENT FINDINGS: The development of two optical measurement techniques utilizing novel minimally invasive techniques to quantify kidney function, independent of serum or urinary measurements is advancing. Utilization of both one and two compartmental models, as well as continuous monitoring, are being developed. SUMMARY: The clinical utility of rapid GFR measurements in AKI patients remains unknown as these disruptive technologies have not been tested in studies exploring clinical outcomes. However, these approaches have the potential to improve our understanding of AKI and clinical care. This overdue technology has the potential to individualize patient care and foster therapeutic success in AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Injúria Renal Aguda/diagnóstico , Biomarcadores , Creatinina , Taxa de Filtração Glomerular , Humanos , Prognóstico
9.
J Am Soc Nephrol ; 29(6): 1609-1613, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29748326

RESUMO

Background Direct quantitative measurement of GFR (mGFR) remains a specialized task primarily performed in research settings. Multiple formulas for estimating GFR have been developed that use the readily available endogenous biomarkers creatinine and/or cystatin C. However, eGFR formulas have limitations, and an accurate mGFR is necessary in some clinical situations and for certain patient populations. We conducted a prospective, open-label study to evaluate a novel rapid technique for determining plasma volume and mGFR.Methods We developed a new exogenous biomarker, visible fluorescent injectate (VFI), consisting of a large 150-kD rhodamine derivative and small 5-kD fluorescein carboxymethylated dextrans. After a single intravenous injection of VFI, plasma volume and mGFR can be determined on the basis of the plasma pharmacokinetics of the rhodamine derivative and fluorescein carboxymethylated dextrans, respectively. In this study involving 32 adults with normal kidney function (n=16), CKD stage 3 (n=8), or CKD stage 4 (n=8), we compared VFI-based mGFR values with values obtained by measuring iohexol plasma disappearance. VFI-based mGFR required three 0.5-ml blood draws over 3 hours; iohexol-based mGFR required five samples taken over 6 hours. Eight healthy participants received repeat VFI injections at 24 hours.Results VFI-based mGFR values showed close linear correlation with the iohexol-based mGFR values in all participants. Injections were well tolerated, including when given on consecutive days. No serious adverse events were reported. VFI-based mGFR was highly reproducible.Conclusions The VFI-based approach allows for the rapid determination of mGFR at the bedside while maintaining patient safety and measurement accuracy and reproducibility.


Assuntos
Dextranos/farmacocinética , Fluoresceína/farmacocinética , Taxa de Filtração Glomerular , Volume Plasmático , Sistemas Automatizados de Assistência Junto ao Leito , Insuficiência Renal Crônica/fisiopatologia , Rodaminas/farmacocinética , Adulto , Idoso , Estudos de Casos e Controles , Dextranos/administração & dosagem , Feminino , Fluoresceína/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Humanos , Injeções Intravenosas , Iohexol/farmacocinética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Rodaminas/administração & dosagem , Adulto Jovem
10.
J Am Soc Nephrol ; 29(4): 1154-1164, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371417

RESUMO

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.


Assuntos
Precondicionamento Isquêmico , Isocitrato Desidrogenase/genética , Rim/irrigação sanguínea , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Creatinina/sangue , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Isocitrato Desidrogenase/fisiologia , Túbulos Renais Proximais/citologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Recidiva , Transfecção , Regulação para Cima
12.
Methods ; 128: 20-32, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733090

RESUMO

The kidney is a complex and dynamic organ with over 40 cell types, and tremendous structural and functional diversity. Intravital multi-photon microscopy, development of fluorescent probes and innovative software, have rapidly advanced the study of intracellular and intercellular processes within the kidney. Researchers can quantify the distribution, behavior, and dynamic interactions of up to four labeled chemical probes and proteins simultaneously and repeatedly in four dimensions (time), with subcellular resolution in near real time. Thus, multi-photon microscopy has greatly extended our ability to investigate cell biology intravitally, at cellular and subcellular resolutions. Therefore, the purpose of the chapter is to demonstrate how the use in intravital multi-photon microscopy has advanced the understanding of both the physiology and pathophysiology of the kidney.


Assuntos
Microscopia Intravital/métodos , Rim/diagnóstico por imagem , Rim/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/fisiopatologia , Animais , Endocitose/fisiologia , Humanos , Rim/fisiopatologia
13.
J Am Soc Nephrol ; 28(8): 2420-2430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28250053

RESUMO

In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.


Assuntos
Microscopia Intravital , Rim/citologia , Rim/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Rim/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Am Soc Nephrol ; 28(7): 2081-2092, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28122967

RESUMO

Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.


Assuntos
Hidratação/métodos , Hidrodinâmica , Soluções Isotônicas/administração & dosagem , Rim/irrigação sanguínea , Traumatismo por Reperfusão/terapia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
15.
J Am Soc Nephrol ; 28(6): 1741-1752, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28062569

RESUMO

Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvß5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvß5 in a rat model of renal IRI. Pretreatment with this anti-αvß5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvß5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvß5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvß5 antibody treatment. Immunostaining for αvß5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvß5 in modulating vascular leak. Additional studies showed αvß5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvß5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvß5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvß5 inhibition as a promising therapeutic strategy for AKI.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Rim/irrigação sanguínea , Receptores de Vitronectina/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Masculino , Ratos , Ratos Sprague-Dawley
16.
JAMA ; 320(19): 1998-2009, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30357272

RESUMO

Importance: Sepsis-associated acute kidney injury (AKI) adversely affects long-term kidney outcomes and survival. Administration of the detoxifying enzyme alkaline phosphatase may improve kidney function and survival. Objective: To determine the optimal therapeutic dose, effect on kidney function, and adverse effects of a human recombinant alkaline phosphatase in patients who are critically ill with sepsis-associated AKI. Design, Setting, and Participants: The STOP-AKI trial was an international (53 recruiting sites), randomized, double-blind, placebo-controlled, dose-finding, adaptive phase 2a/2b study in 301 adult patients admitted to the intensive care unit with a diagnosis of sepsis and AKI. Patients were enrolled between December 2014 and May 2017, and follow-up was conducted for 90 days. The final date of follow-up was August 14, 2017. Interventions: In the intention-to-treat analysis, in part 1 of the trial, patients were randomized to receive recombinant alkaline phosphatase in a dosage of 0.4 mg/kg (n = 31), 0.8 mg/kg (n = 32), or 1.6 mg/kg (n = 29) or placebo (n = 30), once daily for 3 days, to establish the optimal dose. The optimal dose was identified as 1.6 mg/kg based on modeling approaches and adverse events. In part 2, 1.6 mg/kg (n = 82) was compared with placebo (n = 86). Main Outcomes and Measures: The primary end point was the time-corrected area under the curve of the endogenous creatinine clearance for days 1 through 7, divided by 7 to provide a mean daily creatinine clearance (AUC1-7 ECC). Incidence of fatal and nonfatal (serious) adverse events ([S]AEs) was also determined. Results: Overall, 301 patients were enrolled (men, 70.7%; median age, 67 years [interquartile range {IQR}, 59-73]). From day 1 to day 7, median ECC increased from 26.0 mL/min (IQR, 8.8 to 59.5) to 65.4 mL/min (IQR, 26.7 to 115.4) in the recombinant alkaline phosphatase 1.6-mg/kg group vs from 35.9 mL/min (IQR, 12.2 to 82.9) to 61.9 mL/min (IQR, 22.7 to 115.2) in the placebo group (absolute difference, 9.5 mL/min [95% CI, -23.9 to 25.5]; P = .47). Fatal adverse events occurred in 26.3% of patients in the 0.4-mg/kg recombinant alkaline phosphatase group; 17.1% in the 0.8-mg/kg group, 17.4% in the 1.6-mg/kg group, and 29.5% in the placebo group. Rates of nonfatal SAEs were 21.0% for the 0.4-mg/kg recombinant alkaline phosphatase group, 14.3% for the 0.8-mg/kg group, 25.7% for the 1.6-mg/kg group, and 20.5% for the placebo group. Conclusions and Relevance: Among patients who were critically ill with sepsis-associated acute kidney injury, human recombinant alkaline phosphatase compared with placebo did not significantly improve short-term kidney function. Further research is necessary to assess other clinical outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT02182440.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Fosfatase Alcalina/administração & dosagem , Creatinina/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Idoso , Fosfatase Alcalina/efeitos adversos , Fosfatase Alcalina/farmacologia , Área Sob a Curva , Estado Terminal , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Sepse/complicações
17.
Am J Physiol Renal Physiol ; 313(2): F163-F173, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404591

RESUMO

Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSCalb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension.


Assuntos
Albuminúria/etiologia , Pressão Sanguínea , Hipertensão/etiologia , Microscopia Intravital , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Albuminúria/sangue , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Hipertensão/sangue , Hipertensão/patologia , Hipertensão/fisiopatologia , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Ratos Endogâmicos Dahl , Reabsorção Renal , Albumina Sérica/metabolismo , Cloreto de Sódio na Dieta , Fatores de Tempo
18.
Am J Kidney Dis ; 69(5): 675-683, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28223001

RESUMO

Chronic kidney disease (CKD) is an increasing clinical problem. Although clinical risk factors and biomarkers for the development and progression of CKD have been identified, there is no commercial surveillance technology to definitively diagnose and quantify the severity and progressive loss of glomerular filtration rate (GFR) in CKD. This has limited the study of potential therapies to late stages of CKD when FDA-registerable events are more likely. Because patient outcomes, including the rate of CKD progression, correlate with disease severity and effective therapy may require early intervention, being able to diagnose and stratify patients by their level of decreased kidney function early on is key for translational progress. In addition, renal reserve, defined as the increase in GFR following stimulation, may improve the quantification of GFR based solely on basal levels. Various groups are developing and characterizing optical measurement techniques using new minimally invasive or noninvasive approaches for quantifying basal and stimulated kidney function. This development has the potential to allow widespread individualization of therapy at an earlier disease stage. Therefore, the purposes of this review are to suggest why quantifying stimulated GFR, by activating renal reserve, may be advantageous in patients and to review fluorescent technologies to deliver patient-specific GFR.


Assuntos
Creatinina/metabolismo , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/metabolismo , Animais , Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Proteínas Alimentares/metabolismo , Progressão da Doença , Intervenção Médica Precoce , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceínas , Humanos , Inulina/análogos & derivados , Rim/diagnóstico por imagem , Oligossacarídeos , Imagem Óptica , Volume Plasmático , Compostos Radiofarmacêuticos , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/fisiopatologia , Índice de Gravidade de Doença , Pentetato de Tecnécio Tc 99m
19.
J Am Soc Nephrol ; 27(1): 49-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26510884

RESUMO

Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies.


Assuntos
Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Hemodinâmica , Circulação Renal , Pesquisa Biomédica , Humanos
20.
J Am Soc Nephrol ; 27(2): 482-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26054544

RESUMO

Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.


Assuntos
Albuminas/farmacocinética , Túbulos Renais Proximais/metabolismo , Animais , Feminino , Túbulos Renais Proximais/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA