Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Pept Sci ; 30(7): e3592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38447547

RESUMO

The CRISPR-Cas9 system has revolutionized the field of genetic engineering, but targeted cellular delivery remains a central problem. The delivery of the preformed ribonuclease-protein (RNP) complex has the advantages of fewer side effects and avoidance of potential permanent effects. We reasoned that an internalizing IgG antibody as a targeting device could address the delivery of Cas9-RNP. We opted for protein trans-splicing mediated by a split intein to facilitate posttranslational conjugation of the two large protein entities. We recently described the cysteine-less CL split intein that efficiently performs under oxidizing conditions and does not interfere with disulfide bonds or thiol bioconjugation chemistries. Using the CL split intein, we report for the first time the ligation of monoclonal IgG antibody precursors, expressed in mammalian cells, and a Cas9 precursor, obtained from bacterial expression. A purified IgG-Cas9 conjugate was loaded with sgRNA to form the active RNP complex and introduced a double-strand break in its target DNA in vitro. Furthermore, a synthetic peptide variant of the short N-terminal split intein precursor proved useful for chemical modification of Cas9. The split intein ligation procedure reported here for IgG-Cas9 provides the first step towards a novel CRISPR-Cas9 targeting approach involving the preformed RNP complex.


Assuntos
Sistemas CRISPR-Cas , Imunoglobulina G , Inteínas , Imunoglobulina G/química , Imunoglobulina G/genética , Humanos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/química
2.
Nucleic Acids Res ; 50(8): 4732-4754, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420136

RESUMO

SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Humanos , Análise em Microsséries , Ligação Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação
3.
Angew Chem Int Ed Engl ; 63(20): e202317753, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38488324

RESUMO

In multi-domain nonribosomal peptide synthetases (NRPSs) the order of domains and their catalytic specificities dictate the structure of the peptide product. Peptidyl-carrier proteins (PCPs) bind activated amino acids and channel elongating peptidyl intermediates along the protein template. To this end, fine-tuned interactions with the catalytic domains and large-scale PCP translocations are necessary. Despite crystal structure snapshots of several PCP-domain interactions, the conformational dynamics under catalytic conditions in solution remain poorly understood. We report a FRET reporter of gramicidin S synthetase 1 (GrsA; with A-PCP-E domains) to study for the first time the interaction between PCP and adenylation (A) domain in the presence of an epimerization (E) domain, a competing downstream partner for the PCP. Bulk FRET measurements showed that upon PCP aminoacylation a conformational shift towards PCP binding to the A domain occurs, indicating the E domain acts on its PCP substrate out of a disfavored conformational equilibrium. Furthermore, the A domain was found to preferably bind the D-Phe-S-Ppant-PCP stereoisomer, suggesting it helps in establishing the stereoisomeric mixture in favor of the D-aminoacyl moiety. These observations surprisingly show that the conformational logic can deviate from the order of domains and thus reveal new principles in the multi-domain interplay of NRPSs.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Peptídeo Sintases , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo
4.
Chembiochem ; 23(12): e202200079, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35411584

RESUMO

Nanobodies against short linear peptide-epitopes are widely used to detect and bind proteins of interest (POI) in fusion constructs. Engineered nanobodies that can be controlled by light have found very recent attention for various extra- and intracellular applications. We here report the design of a photocaged variant of the ultra-high affinity ALFA-tag nanobody, also termed ALFA-tag photobody. ortho-Nitrobenzyl tyrosine was incorporated into the paratope region of the nanobody by genetic code expansion technology and resulted in a ≥9,200 to 100,000-fold impairment of the binding affinity. Irradiation with light (365 nm) leads to decaging and reconstitutes the native nanobody. We show the light-dependent binding of the ALFA-tag photobody to HeLa cells presenting the ALFA-tag. The generation of the first photobody directed against a short peptide epitope underlines the generality of our photobody design concept. We envision that this photobody will be useful for the spatiotemporal control of proteins in many applications using cultured cells.


Assuntos
Anticorpos de Domínio Único , Epitopos/metabolismo , Células HeLa , Humanos , Peptídeos , Proteínas
5.
Proc Natl Acad Sci U S A ; 116(44): 22164-22172, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611397

RESUMO

Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.


Assuntos
Inteínas/fisiologia , Processamento de Proteína , Sequência de Aminoácidos , Cisteína , Engenharia Genética , Células HeLa , Humanos , Oxirredução , Fragmentos de Peptídeos/química , Temperatura
6.
Angew Chem Int Ed Engl ; 61(48): e202212994, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36169151

RESUMO

Nonribosomal peptide synthetases (NRPSs) employ multiple domains, specifically arranged in modules, for the assembly-line biosynthesis of a plethora of bioactive peptides. It is poorly understood how catalysis is correlated with the domain interplay and associated conformational changes. We developed FRET sensors of an elongation module to study in solution the intramodular interactions of the peptidyl carrier protein (PCP) with adenylation (A) and condensation (C) domains. Backed by HDX-MS analysis, we discovered dynamic mixtures of conformations that undergo distinct population changes in favor of the PCP-A and PCP-C interactions upon completion of the adenylation and thiolation reactions, respectively. To probe this model we blocked PCP binding to the C domain by photocaging and triggered peptide bond formation with light. Changing intramodular domain affinities of the PCP appear to result in conformational shifts according to the logic of the templated assembly process.


Assuntos
Proteínas de Transporte , Transferência Ressonante de Energia de Fluorescência , Domínio Catalítico , Proteínas de Transporte/química , Peptídeo Sintases/metabolismo
7.
Chembiochem ; 22(2): 364-373, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32813312

RESUMO

Split inteins are indispensable tools for protein engineering because their ligation and cleavage reactions enable unique modifications of the polypeptide backbone. Three different classes of inteins have been identified according to the nature of the covalent intermediates resulting from the acyl rearrangements in the multistep protein-splicing pathway. Class 3 inteins employ a characteristic internal cysteine for a branched thioester intermediate. A bioinformatic database search of non-redundant protein sequences revealed the absence of split variants in 1701 class 3 inteins. We have discovered the first reported split class 3 intein in a metagenomics data set and report its biochemical, mechanistic and structural analysis. The AceL NrdHF intein exhibits low sequence conservation with other inteins and marked deviations in residues at conserved key positions, including a variation of the typical class-3 WCT triplet motif. Nevertheless, functional analysis confirmed the class 3 mechanism of the intein and revealed excellent splicing yields within a few minutes over a wide range of conditions and with barely detectable cleavage side reactions. A high-resolution crystal structure of the AceL NrdHF precursor and a mutagenesis study explained the importance and roles of several residues at the key positions. Tolerated substitutions in the flanking extein residues and a high affinity between the split intein fragments further underline the intein's future potential as a ligation tool.


Assuntos
Proteínas/química , Biologia Computacional , Inteínas , Modelos Moleculares , Conformação Proteica , Processamento de Proteína
8.
Angew Chem Int Ed Engl ; 60(29): 15972-15979, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844389

RESUMO

The thiol group of the cysteine side chain is arguably the most versatile chemical handle in proteins. To expand the scope of established and commercially available thiol bioconjugation reagents, we genetically encoded a second such functional moiety in form of a latent thiol group that can be unmasked under mild physiological conditions. Phenylacetamidomethyl (Phacm) protected homocysteine (HcP) was incorporated and its latent thiol group unmasked on purified proteins using penicillin G acylase (PGA). The enzymatic deprotection depends on steric accessibility, but can occur efficiently within minutes on exposed positions in flexible sequences. The freshly liberated thiol group does not require treatment with reducing agents. We demonstrate the potential of this approach for protein modification with conceptually new schemes for regioselective dual labeling, thiol bioconjugation in presence of a preserved disulfide bond and formation of a novel intramolecular thioether crosslink.


Assuntos
Proteínas/química , Compostos de Sulfidrila/química , Cisteína/química , Dissulfetos/química , Penicilina Amidase/química , Penicilina Amidase/genética
9.
Biophys J ; 119(8): 1558-1567, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976759

RESUMO

Post-translational modification with one of the isoforms of the small ubiquitin-like modifier (SUMO) affects thousands of proteins in the human proteome. The binding of SUMO to SUMO interacting motifs (SIMs) can translate the SUMOylation event into functional consequences. The E3 ubiquitin ligase RNF4 contains multiple SIMs and connects SUMOylation to the ubiquitin pathway. SIM2 and SIM3 of RNF4 were shown to be the most important motifs to recognize SUMO chains. However, the study of SIM-SUMO complexes is complicated by their typically low affinity and variable binding of the SIMs in parallel and antiparallel orientations. We investigated properties of complexes formed by SUMO3 with peptides containing either SIM2 or SIM3 using molecular dynamics simulations. The affinities of the complexes were determined using a state-of-the-art free energy protocol and were found to be in good agreement with experimental data, thus corroborating our method. Long unrestrained simulations allowed a new interpretation of experimental results regarding the structure of the SIM-SUMO interface. We show that both SIM2 and SIM3 bind SUMO3 in parallel and antiparallel orientations and identified main interaction sites for acidic residues flanking the SIM. We noticed unusual SIM-SUMO interfaces in a previously reported NMR structure (PDB: 2mp2) of a complex formed by a SUMO3 dimer with the bivalent SIM2-SIM3 peptide. Computational determination of the individual SIM-SUMO affinities based on these structural arrangements yielded significantly higher dissociation constants. To our knowledge, our approach adds new opportunities to characterize individual SIM-SUMO complexes and suggests that further studies will be necessary to understand these interactions when occurring in multivalent form.


Assuntos
Sumoilação , Ubiquitina , Motivos de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases
10.
Angew Chem Int Ed Engl ; 59(4): 1506-1510, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31755215

RESUMO

Photocaged antibody fragments, termed photobodies, have been developed that are impaired in their antigen-binding capacity and can be activated by irradiation with UV light (365 nm). This rational design concept builds on the selective photocaging of a single tyrosine in a nanobody (a single-domain antibody fragment). Tyrosine is a frequently occurring residue in central positions of the paratope region. o-Nitrobenzyl-protected tyrosine variants were incorporated into four nanobodies, including examples directed against EGFR and HER2, and photodeprotection restores the native sequence. An anti-GFP photobody exhibited an at least 10 000-fold impaired binding affinity before photodeprotection compared with the parent nanobody. A bispecific nanobody-photobody fusion protein was generated to trigger protein heterodimerization by light. Photoactivatable antibodies are expected to become versatile protein reagents and to enable novel approaches in diagnostic and therapeutic applications.


Assuntos
Anticorpos/química , Anticorpos de Domínio Único/química
11.
Angew Chem Int Ed Engl ; 59(47): 21007-21015, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32777124

RESUMO

Protein semi-synthesis inside live cells from exogenous and endogenous parts offers unique possibilities for studying proteins in their native context. Split-intein-mediated protein trans-splicing is predestined for such endeavors and has seen some successes, but a much larger variety of established split inteins and associated protocols is urgently needed. We characterized the association and splicing parameters of the Gp41-1 split intein, which favorably revealed a nanomolar affinity between the intein fragments combined with the exceptionally fast splicing rate. Following bead-loading of a chemically modified intein fragment precursor into live mammalian cells, we fluorescently labeled target proteins on their N- and C-termini with short peptide tags, thus ensuring minimal perturbation of their structure and function. In combination with a nuclear-entrapment strategy to minimize cytosolic fluorescence background, we applied our technique for super-resolution imaging and single-particle tracking of the outer mitochondrial protein Tom20 in HeLa cells.


Assuntos
Proteínas de Membrana Transportadoras/biossíntese , Receptores de Superfície Celular/biossíntese , Células HeLa , Humanos , Inteínas , Proteínas de Membrana Transportadoras/química , Microscopia de Fluorescência , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Imagem Óptica , Biossíntese de Proteínas , Processamento de Proteína , Receptores de Superfície Celular/química
12.
Chembiochem ; 20(1): 72-77, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30216604

RESUMO

Semisynthetic cyclic peptides containing both non-proteinogenic building blocks, as the synthetic part, and a genetically encoded sequence amenable to DNA-based randomization hold great potential to expand the chemical space in the quest for novel bioactive peptides. Key to an efficient selection of novel binders to biomacromolecules is a robust method to link their genotype and phenotype. A novel bacterial cell surface display technology has been developed to present cyclic peptides composed of synthetic and genetically encoded fragments in their backbones. The fragments were combined by protein trans-splicing and intramolecular oxime ligation. To this end, a split intein half and an unnatural amino acid were displayed with the genetically encoded part on the surface of Escherichia coli. Addition of the synthetic fragment equipped with the split intein partner and an aminooxy moiety, as well as the application of a pH-shift protocol, resulted in the onsurface formation of the semisynthetic cyclic peptide. This approach will serve for the generation of cyclic peptide libraries suitable for selection by fluorescence-activated cell sorting, and more generally enables chemical modification of proteins on the bacterial surface.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Peptídeos Cíclicos/biossíntese , Ciclização , Escherichia coli/genética , Oximas/síntese química , Biblioteca de Peptídeos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/genética , Engenharia de Proteínas/métodos , Trans-Splicing
13.
Biol Chem ; 400(4): 467-475, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30226200

RESUMO

Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.


Assuntos
Inteínas , Processamento de Proteína Pós-Traducional , Processamento de Proteína , Proteínas/metabolismo , Animais , Humanos , Proteínas/química
14.
Biol Chem ; 400(3): 417-427, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30403651

RESUMO

Head-to-tail cyclization of genetically encoded peptides and proteins can be achieved with the split intein circular ligation of peptides and proteins (SICLOPPS) method by inserting the desired polypeptide between the C- and N-terminal fragments of a split intein. To prevent the intramolecular protein splicing reaction from spontaneously occurring upon folding of the intein domain, we have previously rendered this process light-dependent in a photo-controllable variant of the M86 intein, using genetically encoded ortho-nitrobenzyltyrosine at a structurally important position. Here, we report improvements on this photo-intein with regard to expression yields and rate of cyclic peptide formation. The temporally defined photo-activation of the purified stable intein precursor enabled a kinetic analysis that identified the final resolution of the branched intermediate as the rate-determining individual reaction of the three steps catalyzed by the intein. With this knowledge, we prepared an R143H mutant with a block F histidine residue. This histidine is conserved in most inteins and helps catalyze the third step of succinimide formation. The engineered intein formed the cyclic peptide product up to 3-fold faster within the first 15 min after irradiation, underlining the potential of protein splicing pathway engineering. The broader utility of the intein was also shown by formation of the 14-mer sunflower trypsin inhibitor 1.


Assuntos
Peptídeos Cíclicos/biossíntese , Cromatografia Líquida , Inteínas , Espectrometria de Massas , Estrutura Molecular , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/genética , Processos Fotoquímicos , Processamento de Proteína/genética , Solubilidade
15.
Nat Chem Biol ; 13(9): 1009-1015, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28759017

RESUMO

Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Modelos Biológicos , Peptídeo Sintases/química , Ligantes , Ligação Proteica , Conformação Proteica
16.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1349-1358, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28476645

RESUMO

Recent work has shown that deregulation of the transcription factor Myb contributes to the development of leukemia and several other human cancers, making Myb and its cooperation partners attractive targets for drug development. By employing a myeloid Myb-reporter cell line we have identified Withaferin A (WFA), a natural compound that exhibits anti-tumor activities, as an inhibitor of Myb-dependent transcription. Analysis of the inhibitory mechanism of WFA showed that WFA is a significantly more potent inhibitor of C/EBPß, a transcription factor cooperating with Myb in myeloid cells, than of Myb itself. We show that WFA covalently modifies specific cysteine residues of C/EBPß, resulting in the disruption of the interaction of C/EBPß with the co-activator p300. Our work identifies C/EBPß as a novel direct target of WFA and highlights the role of p300 as a crucial co-activator of C/EBPß. The finding that WFA is a potent inhibitor of C/EBPß suggests that inhibition of C/EBPß might contribute to the biological activities of WFA.


Assuntos
Antineoplásicos/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Vitanolídeos/farmacologia , Células 3T3 , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/química , Linhagem Celular Tumoral , Humanos , Camundongos , Ligação Proteica , Fatores de Transcrição de p300-CBP/metabolismo
17.
J Am Chem Soc ; 140(36): 11267-11275, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111090

RESUMO

Protein splicing performed by inteins provides powerful opportunities to manipulate protein structure and function, however, detailed mechanistic knowledge of the multistep pathway to help engineering optimized inteins remains scarce. A typical intein has to coordinate three steps to maximize the product yield of ligated exteins. We have revealed a new type of coordination in the Ssp DnaB intein, in which the initial N- S acyl shift appears rate-limiting and acts as an up-regulation switch to dramatically accelerate the last step of succinimide formation, which is thus coupled to the first step. The structure-activity relationship at the N-terminal scissile bond was studied with atomic precision using a semisynthetic split intein. We show that the removal of the extein acyl group from the α-amino moiety of the intein's first residue is strictly required and sufficient for the up-regulation switch. Even an acetyl group as the smallest possible extein moiety completely blocked the switch. Furthermore, we investigated the M86 intein, a mutant with faster splicing kinetics previously obtained by laboratory evolution of the Ssp DnaB intein, and the individual impact of its eight mutations. The succinimide formation was decoupled from the first step in the M86 intein, but the acquired H143R mutation acts as a brake to prevent premature C-terminal cleavage and thereby maximizes splicing yields. Together, these results revealed a high degree of plasticity in the kinetic coordination of the splicing pathway. Furthermore, our study led to the rational design of improved M86 mutants with the highest yielding trans-splicing and fastest trans-cleavage activities.

18.
Chembiochem ; 19(2): 177-184, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29120074

RESUMO

The small ubiquitin-like modifier (SUMO) can be assembled into polymeric chains as part of its diverse biochemical signal pattern upon conjugation to substrate proteins. SUMO chain recognition is facilitated by receptor proteins that contain at least two SUMO-interacting motifs (SIMs). Little is known about the structure of SUMO chains, both in an unliganded form and upon complexation with multi-SIM protein partners. A FRET sensor has been developed based on a linear dimer of human SUMO-2 as a minimal SUMO chain analogue. The synthetic acceptor and donor dyes were conjugated by maleimide and copper-catalyzed click chemistry to each of the two SUMO subunits. FRET changes were only observed in the presence of di- or multi-SIM ligands. Alteration of the short linker sequence between SIMs 2 and 3 of RNF4 showed a great tolerance, and hence, structural flexibility, of the SUMO dimer for bivalent binding of adjacent SIMs. The di-SUMO FRET sensor reports on the binding of SIM clusters of the proteins C5orf25 and SOBP; this suggest that these can bind to adjacent subunits of a SUMO chain. The developed FRET sensor will be a useful tool to study the importance of SIM and linker sequences, as well as biochemical and structural properties of SUMO chains and multi-SIM proteins.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sítios de Ligação , Dimerização , Humanos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química
19.
Biol Chem ; 398(1): 57-67, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632429

RESUMO

Protein splicing by inteins has found diverse applications in biotechnology, protein chemistry and chemical biology. Inteins display a wide range of efficiencies and rates unpredictable from their amino acid sequences. Here, we identified positions T22S and S35 in the LacZα peptide as intein insertion sites that strictly require protein splicing, in contrast to cleavage side-reactions, to allow for complementation of ß-galactosidase activity. Both the cis-variant of the M86 mutant of the Ssp DnaB intein and a split form undergoing protein trans-splicing gave rise to formation of blue colonies in the ß-galactosidase read-out. Furthermore, we report the two novel, naturally split VidaL T4Lh-1 and VidaL UvsX-2 inteins whose N-terminal fragments consist of only 15 and 16 amino acids, respectively. Initial biochemical characterization with the LacZα host system of these inteins further underlines its utility. Finally, we used the LacZα host system to rapidly identify amino acid substitutions from a small randomized library at the structurally conserved intein position 2 next to the catalytic center, that are tolerated for protein splicing activity of the M86 intein. These findings demonstrate the potential of the system for initial testing and directed evolution of inteins.


Assuntos
Biblioteca Gênica , Inteínas/genética , Óperon Lac , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína , Sequência de Aminoácidos , Modelos Moleculares , Mutação , Peptídeos/genética , Conformação Proteica , beta-Galactosidase/metabolismo
20.
Chemistry ; 23(25): 5978-5982, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28121373

RESUMO

The weak interaction between the post-translational modifier SUMO (small ubiquitin-like modifier) and proteins containing the SUMO-interacting motif (SIM) poses limitations to the identification of interaction partners of SUMOylated proteins and to the mapping of the interfaces. To overcome these limitations, genetically encoded photocrosslinker amino acids were incorporated close to the SIM-interaction groove in human SUMO1. UV irradiation resulted in the desired covalent crosslinks both in a purified protein environment and in cell extracts.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Proteínas Repressoras/química , Proteína SUMO-1/química , Raios Ultravioleta , Motivos de Aminoácidos , Aminoácidos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Mutagênese , Peptídeos/análise , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA