Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 23(11): 1715-1718, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32844521

RESUMO

A recent meta-analysis concluded, 'transgenerational effects are widespread, strong and persistent'. We identify biases in the literature search, data and analyses, questioning that conclusion. Re-analyses indicate few studies actually tested transgenerational effects - making it challenging to disentangle condition-transfer from anticipatory parental effects, and providing little insight into the underlying mechanisms.

2.
J Evol Biol ; 33(9): 1216-1223, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512630

RESUMO

Meta-analysis is increasingly used in biology to both quantitatively summarize available evidence for specific questions and generate new hypotheses. Although this powerful tool has mostly been deployed to study mean effects, there is untapped potential to study effects on (trait) variance. Here, we use a recently published data set as a case study to demonstrate how meta-analysis of variance can be used to provide insights into biological processes. This data set included 704 effect sizes from 89 studies, covering 56 animal species, and was originally used to test developmental stress effects on a range of traits. We found that developmental stress not only negatively affects mean trait values, but also increases trait variance, mostly in reproduction, showcasing how meta-analysis of variance can reveal previously overlooked effects. Furthermore, we show how meta-analysis of variance can be used as a tool to help meta-analysts make informed methodological decisions, even when the primary focus is on mean effects. We provide all data and comprehensive R scripts with detailed explanations to make it easier for researchers to conduct this type of analysis. We encourage meta-analysts in all disciplines to move beyond the world of means and start unravelling secrets of the world of variance.


Assuntos
Ecologia/métodos , Aptidão Genética , Metanálise como Assunto , Fenótipo , Estresse Fisiológico , Animais , Evolução Biológica
3.
Oecologia ; 185(1): 55-67, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779225

RESUMO

Intraspecific trait variation, including animal personalities and behavioural syndromes, affects how individual animals and populations interact with their environment. Within-species behavioural variation is widespread across animal taxa, which has substantial and unexplored implications for the ecological and evolutionary processes of animals. Accordingly, we sought to investigate individual behavioural characteristics in several populations of a desert-dwelling fish, the Australian desert goby (Chlamydogobius eremius). We reared first generation offspring in a common garden to compare non-ontogenic divergence in behavioural phenotypes between genetically interconnected populations from contrasting habitats (isolated groundwater springs versus hydrologically variable river waterholes). Despite the genetic connectedness of populations, fish had divergent bold-exploratory traits associated with their source habitat. This demonstrates divergence in risk-taking traits as a rapid phenotypic response to ecological pressures in arid aquatic habitats: neophilia may be suppressed by increased predation pressure and elevated by high intraspecific competition. Correlations between personality traits also differed between spring and river fish. River populations showed correlations between dispersal and novel environment behaviours, revealing an adaptive behavioural syndrome (related to dispersal and exploration) that was not found in spring populations. This illustrates the adaptive significance of heritable behavioural variation within and between populations, and their importance to animals persisting across contrasting habitats.


Assuntos
Ecossistema , Peixes/fisiologia , Personalidade , Comportamento Predatório , Rios , Animais , Austrália , Comportamento Animal/fisiologia , Clima Desértico
4.
Physiol Behav ; 269: 114261, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290607

RESUMO

The round goby (Neogobius melanostomus) is a fish native to the Ponto-Caspian region that is highly invasive through freshwater and brackish habitats in northern Europe and North America. Individual behavioural variation appears to be an important factor in their spread, for example a round goby's personality traits can influence their dispersal tendency, which may also produce variation in the behavioral composition of populations at different points along their invasion fronts. To further analyze the drivers of behavioral variation within invasive round goby populations, we focused on two populations along the Baltic Sea invasion front with closely comparable physical and community characteristics. Specifically, this study measured personality within a novel environment and predator response context (i.e., boldness), and directly analyzed links between individuals' personality traits and their physiological characteristics and stress responses (i.e., blood cortisol and lactate, brain neurotransmitters). In contrast to previous findings, the more recently established population had similar activity levels but were less bold in response to a predator cue than the older population, which suggests that behavioral compositions within our study populations may be more driven by local environmental conditions rather than being a result of personality-biased dispersal. Furthermore, we found that both populations showed similar physiological stress responses, and there also appeared to be no detectable relationship between physiological parameters and behavioral responses to predator cues. Instead, body size and body condition were important factors influencing individual behavioral responses. Overall, our results reinforce the importance of boldness traits as a form of phenotypic variation in round goby populations in the Baltic Sea. We also highlight the importance of these traits for future studies specifically testing for effects of invasion processes on phenotypic variation in the species. Nonetheless, our results also highlight that the physiological mechanisms underpinning behavioural variation in these populations remain unclear.


Assuntos
Tamanho Corporal , Oceanos e Mares , Perciformes , Comportamento Predatório , Estresse Fisiológico , Perciformes/anatomia & histologia , Perciformes/sangue , Perciformes/fisiologia , Comportamento Predatório/fisiologia , Tamanho Corporal/fisiologia , Estresse Fisiológico/fisiologia , Dinamarca , Assunção de Riscos , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Química Encefálica
5.
Biol Rev Camb Philos Soc ; 96(1): 269-288, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33015971

RESUMO

Animal behaviour can lead to varying levels of risk, and an individual's physical condition can alter the potential costs and benefits of undertaking risky behaviours. How risk-taking behaviour depends on condition is subject to contrasting hypotheses. The asset protection principle proposes that individuals in better condition should be more risk averse, as they have higher future reproductive potential (i.e. more to lose). The state-dependent safety hypothesis proposes that high-condition individuals that are more likely to survive and maximise the benefits of risky situations may make apparently riskier choices, as their individual risk is in fact lower. We systematically searched for studies that experimentally manipulated animals' nutritional or energetic condition through diet treatments, and subsequently measured risk-taking behaviour in contexts relating to predation, novelty and exploration. Our meta-analysis quantified condition effects on risk-taking behaviour at both the mean and variance level. We preregistered our methods and hypotheses prior to conducting the study. Phylogenetic multilevel meta-analysis revealed that the lower-nutritional-condition individuals showed on average ca. 26% greater tendency towards risk than high-condition individuals (95% confidence interval: 15-38%; N = 126 studies, 1297 effect sizes). Meta-regressions revealed several factors influencing the overall effect, such as the experimental context used to measure risk-taking behaviour, and the life stage when condition was manipulated. Meta-analysis of variance revealed no clear overall effect of condition on behavioural variance (on average ca. 3% decrease in variance in low- versus high-condition groups; 95% confidence interval: -8 to 3%; N = 119 studies, 1235 effect sizes), however, the experimental context was an important factor influencing the strength and direction of the variance effect. Our comprehensive systematic review and meta-analysis provide insights into the roles of state dependency and plasticity in intraspecific behavioural variation. While heterogeneity among effect sizes was high, our results show that poor nutritional state on average increases risk taking in ecological contexts involving predation, novelty and exploration.


Assuntos
Comportamento Animal , Comportamento Predatório , Animais , Humanos , Filogenia , Assunção de Riscos , Comportamento Social
6.
Ecol Evol ; 9(19): 11464-11475, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641486

RESUMO

Studying food webs across contrasting abiotic conditions is an important tool in understanding how environmental variability impacts community structure and ecosystem dynamics. The study of extreme environments provides insight into community-wide level responses to environmental pressures with relevance to the future management of aquatic ecosystems. In the western Lake Eyre Basin of arid Australia, there are two characteristic and contrasting aquatic habitats: springs and rivers. Permanent isolated Great Artesian Basin springs represent hydrologically persistent environments in an arid desert landscape. In contrast, hydrologically variable river waterholes are ephemeral in space and time. We comprehensively sampled aquatic assemblages in contrasting ecosystem types to assess patterns in community composition and to quantify food web attributes with stable isotopes. Springs and rivers were found to have markedly different invertebrate communities, with rivers dominated by more dispersive species and springs associated with species that show high local endemism. Qualitative assessment of basal resources shows autochthonous carbon appears to be a key basal resource in both types of habitat, although the particular sources differed between habitats. Food-web variables such as trophic length, trophic breadth, and community isotopic niche size were relatively similar in the two habitat types. The basis for the similarity in food-web structure despite differences in community composition appears to be broader isotopic niches for predatory invertebrates and fish in springs as compared with rivers. In contrast to published theory, our findings suggest that the food webs of the hydrologically variable river sites may show less dietary generalization and more compact food-web modules than in springs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA