RESUMO
Autophagic protein degradation is mediated by autophagosomes that fuse with lysosomes, where their contents are degraded. The membrane origins of autophagosomes may involve multiple sources. However, it is unclear if and where distinct membrane sources fuse during autophagosome biogenesis. Vesicles containing mATG9, the only transmembrane autophagy protein, are seen in many sites, and fusions with other autophagic compartments have not been visualized in mammalian cells. We observed that mATG9 traffics from the plasma membrane to recycling endosomes in carriers that appear to be routed differently from ATG16L1-containing vesicles, another source of autophagosome membrane. mATG9- and ATG16L1-containing vesicles traffic to recycling endosomes, where VAMP3-dependent heterotypic fusions occur. These fusions correlate with autophagosome formation, and both processes are enhanced by perturbing membrane egress from recycling endosomes. Starvation, a primordial autophagy activator, reduces membrane recycling from recycling endosomes and enhances mATG9-ATG16L1 vesicle fusion. Thus, this mechanism may fine-tune physiological autophagic responses.
Assuntos
Autofagia , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Transporte ProteicoRESUMO
Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which can be derived from preautophagosomal structures coming from the plasma membrane and other sites like the endoplasmic reticulum and mitochondria. The mechanisms by which preautophagosomal structures elongate their membranes and mature toward fully formed autophagosomes still remain unknown. Here, we show that the maturation of the early Atg16L1 precursors requires homotypic fusion, which is essential for subsequent autophagosome formation. Atg16L1 precursor homotypic fusion depends on the SNARE protein VAMP7 together with partner SNAREs. Atg16L1 precursor homotypic fusion is a critical event in the early phases of autophagy that couples membrane acquisition and autophagosome biogenesis, as this step regulates the size of the vesicles, which in turn appears to influence their subsequent maturation into LC3-positive autophagosomes.
Assuntos
Autofagia , Fagossomos/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Vesículas Citoplasmáticas/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismoRESUMO
The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.
Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
CC chemokine receptor 2 (CCR2) has been linked to many inflammatory and immune diseases, making it a relevant drug target. Yet, all CCR2 antagonists developed so far have failed in clinical trials; thus, novel strategies are needed to target this receptor. Targeted protein degradation represents a novel approach to inhibit protein function by hijacking the cellular degradation machinery, such as the proteasome, to degrade the protein of interest. Here, we aimed to determine the amenability of CCR2 to chemically induced degradation by using a CCR2 fusion protein containing a HaloTag7 and HiBiT tag (CCR2-HaloTag-HiBiT). After characterization of the CCR2 construct, we used luminescence-based assays and immunofluorescence to quantify CCR2 levels, as well as a label-free, phenotypic assay to investigate the functional effect of CCR2 degradation. Treatment with HaloPROTAC3, which selectively degrades HaloTag fusion proteins, led to concentration- and time-dependent degradation of CCR2-HaloTag-HiBiT. HaloPROTAC3 induced degradation via the proteasome, as degradation was fully blocked with proteasomal inhibitors. Finally, functional assays showed that degradation of CCR2-HaloTag-HiBiT leads to a reduced functional response after agonist stimulation. Overall, our results indicate that CCR2 is amenable to targeted degradation, paving the way for the future development of CCR2 chemical degraders.
Assuntos
Complexo de Endopeptidases do Proteassoma , Proteólise , Receptores CCR2 , Receptores CCR2/metabolismo , Humanos , Proteólise/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genéticaRESUMO
Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein-DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1-DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein-DNA recognition and the biological regulation of gene expression levels in eukaryotes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Sequência de Bases/genética , Sítios de Ligação/genética , DNA/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Regulação da Expressão Gênica/genética , Substâncias Macromoleculares/ultraestrutura , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Elementos de Resposta/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fator de Transcrição AP-1/ultraestrutura , Fatores de Transcrição/ultraestrutura , Proteínas de Sinalização YAPRESUMO
The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.
Assuntos
GTP Cicloidrolase/deficiência , Microcirculação , Microvasos/enzimologia , Fenilcetonúrias/enzimologia , Pele/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , GTP Cicloidrolase/genética , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/fisiopatologia , Fenilcetonúrias/genética , Fenilcetonúrias/fisiopatologiaRESUMO
Eukaryotic cells have a highly evolved system of protein secretion, and dysfunction in this pathway is associated with many diseases including cancer, infection, metabolic disease and neurological disorders. Most proteins are secreted using the conventional endoplasmic reticulum (ER)/Golgi network and as such, this pathway is well-characterised. However, several cytosolic proteins have now been documented as secreted by unconventional transport pathways. This review focuses on two of these proteins families: annexins and galectins. The extracellular functions of these proteins are well documented, as are associations of their perturbed secretion with several diseases. However, the mechanisms and regulation of their secretion remain poorly characterised, and are discussed in this review. This review is part of a Special Issues of SCDB on 'unconventional protein secretion' edited by Walter Nickel and Catherine Rabouille.
Assuntos
Anexinas/metabolismo , Galectinas/metabolismo , Transporte Proteico/fisiologia , HumanosRESUMO
Annexins are cytosolic phospholipid-binding proteins that can be found on the outer leaflet of the plasma membrane. The extracellular functions of annexin include modulating fibrinolysis activity and cell migration. Despite having well-described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that the transbilayer movement of phospholipids facilitates the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (also known as anoctamin-6, ANO6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid remodelling.
Assuntos
Anexina A2/metabolismo , Anexina A5/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Anexina A2/genética , Anexina A5/genética , Anoctaminas/genética , Anoctaminas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lipossomos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transporte ProteicoRESUMO
Galectins are a family of lectin binding proteins expressed both intracellularly and extracellularly. Galectin-3 (Gal-3, also known as LGALS3) is expressed at the cell surface; however, Gal-3 lacks a signal sequence, and the mechanism of Gal-3 transport to the cell surface remains poorly understood. Here, using a genome-wide CRISPR/Cas9 forward genetic screen for regulators of Gal-3 cell surface localization, we identified genes encoding glycoproteins, enzymes involved in N-linked glycosylation, regulators of ER-Golgi trafficking and proteins involved in immunity. The results of this screening approach led us to address the controversial role of N-linked glycosylation in the transport of Gal-3 to the cell surface. We find that N-linked glycoprotein maturation is not required for Gal-3 transport from the cytosol to the extracellular space, but is important for cell surface binding. Additionally, secreted Gal-3 is predominantly free and not packaged into extracellular vesicles. These data support a secretion pathway independent of N-linked glycoproteins and extracellular vesicles.
Assuntos
Retículo Endoplasmático/metabolismo , Galectina 3/metabolismo , Complexo de Golgi/metabolismo , Proteínas Sanguíneas , Sistemas CRISPR-Cas , Retículo Endoplasmático/genética , Galectina 3/genética , Galectinas , Estudo de Associação Genômica Ampla , Glicosilação , Complexo de Golgi/genética , Células HeLa , Humanos , Transporte Proteico/fisiologiaRESUMO
Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.
Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Genoma Fúngico , Ribonucleoproteínas/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismoRESUMO
Autophagy involves the sequestration of portions of cytoplasm by double-membraned autophagosomes, which are then trafficked to lysosomes. After autophagosome-lysosome fusion, the contents of the autophagosomes are degraded by lysosomal hydrolases. SNAREs [soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein receptors] are molecules that mediate vesicular fusion events. Here, we review recent data implicating SNAREs as having key roles both in the genesis of autophagosomes, as well as in autophagosome-lysosome fusion, and we discuss the implications of these findings in the context of a long-standing mystery: the origin of autophagosomes.
Assuntos
Autofagia , Lisossomos/metabolismo , Fagossomos/metabolismo , Proteínas SNARE/metabolismo , Animais , Humanos , Fusão de Membrana , Modelos BiológicosRESUMO
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Assuntos
Autofagia/fisiologia , Células Eucarióticas/metabolismo , Mamíferos/fisiologia , Animais , Células Eucarióticas/patologia , Humanos , Fagossomos/metabolismo , Transdução de Sinais , Estresse FisiológicoRESUMO
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Assuntos
Biologia Celular , Biologia do Desenvolvimento , Proteínas de Membrana/metabolismo , Animais , Humanos , Transporte ProteicoRESUMO
Autophagy is an important catabolic pathway that preserves cellular homeostasis. The formation of autophagosomes is a complex process requiring the reorganization of membranes from different compartments. Here we describe methods to analyze SNARE-dependent vesicular fusion events involving the homotypic and heterotypic fusion of autophagosome precursor structures. These two steps are essential for the maturation of small single-membrane autophagic precursors containing ATG16L1 and mATG9 proteins into double-membrane autophagosomes. The techniques described in this review are mostly based on live cell imaging, microscopy, and biochemistry using an in vitro fusion assay, and should help researchers to study autophagosome biogenesis.
Assuntos
Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Biologia Molecular/métodos , Proteínas de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Fagossomos/genética , Fagossomos/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
Macroautophagy is a bulk degradation process characterised by the formation of double-membrane vesicles, called autophagosomes, which deliver cytoplasmic substrates for degradation in the lysosome. It has become increasingly clear that autophagy intersects with multiple steps of the endocytic and exocytic pathways, sharing many molecular players. A number of Rab and Arf GTPases that are involved in the regulation of the secretory and the endocytic membrane trafficking pathways, have been shown to play key roles in autophagy, adding a new level of complexity to its regulation. Studying the regulation of autophagy by small GTPases that are known to be involved in membrane trafficking is becoming a scientific hotspot and may provide answers to various crucial questions currently debated in the autophagy field, such as the origins of the autophagosomal membrane. Thus, this Commentary highlights the recent advances on the regulation of autophagy by membrane-trafficking small GTPases (Rab, Arf and RalB GTPases) and discusses their putative roles in the regulation of autophagosome formation, autophagosome-dependent exocytosis and autophagosome-lysosome fusion.
Assuntos
Autofagia/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Endocitose/genética , Endocitose/fisiologia , Exocitose/genética , Exocitose/fisiologia , Humanos , Fagossomos/genética , Fagossomos/fisiologiaRESUMO
Androgen receptor (AR) signaling plays a key role in the progression of prostate cancer. This study describes the discovery and optimization of a novel series of AR PROTAC degraders that recruit the Cereblon (CRBN) E3 ligase. Having identified a series of AR ligands based on 4-(4-phenyl-1-piperidyl)-2-(trifluoromethyl)benzonitrile, our PROTAC optimization strategy focused on linker connectivity and CRBN ligand SAR to deliver potent degradation of AR in LNCaP cells. This work culminated in compounds 11 and 16 which demonstrated good rodent oral bioavailability. Subsequent SAR around the AR binding region brought in an additional desirable feature, degradation of the important treatment resistance mutation L702H. Compound 22 (AZ'3137) possessed an attractive profile showing degradation of AR and L702H mutant AR with good oral bioavailability across species. The compound also inhibited AR signaling in vitro and tumor growth in vivo in a mouse prostate cancer xenograft model.
Assuntos
Disponibilidade Biológica , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Animais , Humanos , Receptores Androgênicos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Administração Oral , Camundongos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antagonistas de Receptores de Andrógenos/farmacocinética , Descoberta de Drogas , Ensaios Antitumorais Modelo de Xenoenxerto , RatosRESUMO
BACKGROUND: It has been shown that nanomaterials (NMs) are able to translocate to secondary tissues one of the important being the kidneys. Oxidative stress has been implicated as a possible mechanism for NM toxicity, hence effects on the human renal proximal tubule epithelial cells (HK-2) treated with a panel of engineered nanomaterials (NMs) consisting of two zinc oxide particles (ZnO - coated - NM 110 and uncoated - NM 111), two multi walled carbon nanotubes (MWCNT) (NM 400 and NM 402), one silver (NM 300) and five TiO2 NMs (NM 101, NRCWE 001, 002, 003 and 004) were evaluated. METHODS: In order to assess the toxicological impact of the engineered NMs on HK-2 cells - WST-1 cytotoxicity assay, FACSArray, HE oxidation and the comet assays were utilised. For statistical analysis, the experimental values were compared to their corresponding controls using an ANOVA with Tukey's multiple comparison. RESULTS: We found the two ZnO NMs (24 hr LC50 - 2.5 µg/cm2) and silver NM (24 hr LC50 - 10 µg/cm2) were highly cytotoxic to the cells. The LC50 was not attained in the presence of any of the other engineered nanomaterials (up to 80 µg/cm2). All nanomaterials significantly increased IL8 and IL6 production. Meanwhile no significant change in TNF-α or MCP-1 was detectable. The most notable increase in ROS was noted following treatment with the Ag and the two ZnO NMs. Finally, genotoxicity was measured at sub-lethal concentrations. We found a small but significant increase in DNA damage following exposure to seven of the ten NMs investigated (NM 111, NRCWE 001 and NRCWE 003 being the exception) with this increase being most visible following exposure to Ag and the positively charged TiO2. CONCLUSIONS: While the NMs could be categorised as low and highly cytotoxic, sub-lethal effects such as cytokine production and genotoxicity were observed with some of the low toxicity materials.
Assuntos
Engenharia Biomédica/métodos , Citotoxinas/toxicidade , Dano ao DNA/efeitos dos fármacos , Mediadores da Inflamação , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Linhagem Celular Transformada , Citotoxinas/química , Dano ao DNA/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nanoestruturas/química , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Targeted protein degraders (TPDs), which act through the ubiquitin proteasome system (UPS), are one of the newest small-molecule drug modalities. Since the initiation of the first clinical trial in 2019, investigating the use of ARV-110 in patients with cancer, the field has rapidly expanded. Recently, some theoretical absorption, distribution, metabolism, and excretion (ADME) and safety challenges have been posed for the modality. Using these theoretical concerns as a framework, the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium) Protein Degrader Working Group (WG) conducted two surveys to benchmark current preclinical practices for TPDs. Conceptually, the safety assessment of TPDs is the same as for standard small molecules; however, the techniques used, assay conditions/study endpoints, and timing of assessments might need to be modified to address differences in mode of action of the class.
Assuntos
Complexo de Endopeptidases do Proteassoma , Quimera de Direcionamento de Proteólise , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the E-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.
RESUMO
Selective DNA binding by transcription factors (TFs) is crucial for the correct regulation of DNA transcription. In healthy cells, promoters of active genes are hypomethylated. A single CpG methylation within a TF response element (RE) may change the binding preferences of the protein, thus causing the dysregulation of transcription programs. Here, we investigate a molecular mechanism driving the downregulation of the NDUFA13 gene, due to hypermethylation, which is associated with multiple cancers. Using bioinformatic analyses of breast cancer cell line MCF7, we identify a hypermethylated region containing the binding sites of two TFs dimers, CEBPB and E2F1-DP1, located 130 b.p. from the gene transcription start site. All-atom extended MD simulations of wild type and methylated DNA alone and in complex with either one or both TFs dimers provide mechanistic insights into the cooperative asymmetric binding order of the two dimers; the CEBPB binding should occur first to facilitate the E2F1-DP1-DNA association. The CpG methylation within the E2F1-DP1 RE and the linker decrease the cooperativity effects and renders the E2F1-DP1 binding site less recognizable by the TF dimer. Taken together, the identified CpG methylation site may contribute to the downregulation of the NDUFA13 gene.