Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Microb Cell Fact ; 21(1): 29, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227264

RESUMO

Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides-an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.


Assuntos
Lipídeos/biossíntese , Mucor/metabolismo , Biocombustíveis , Vias Biossintéticas , Ácidos Graxos/biossíntese , Genoma Fúngico , Metabolismo dos Lipídeos , Engenharia Metabólica , Redes e Vias Metabólicas , Mucor/genética , Proteômica
2.
Microb Cell Fact ; 20(1): 52, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639948

RESUMO

BACKGROUND: Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-ß, which encodes for ß subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study. RESULTS: The results showed that lipid content of cell dry weight in Snf-ß knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-ß overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-ß gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-ß knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-ß overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-ß manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-ß control lipid metabolism by regulating ACC1 gene. CONCLUSIONS: Our results suggested that Snf-ß gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-ß in lipid accumulation in M. circinelloides.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lipídeos/biossíntese , Mucor/metabolismo , Metabolismo dos Lipídeos
3.
Biotechnol Lett ; 43(1): 193-202, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32809159

RESUMO

BACKGROUND: AMP-activated protein kinase (AMPK) is an important regulator for lipid accumulation, potentially known to have an inhibitory role in lipid synthesis. It inactivates acetyl-CoA carboxylase (ACC), an important regulatory enzyme required for lipid synthesis. However, in Mucor circinelloides, AMPK and its association with lipid accumulation has not been studied yet. OBJECTIVES: To identify AMPK genes in M. circinelloides and to compare their expression levels in high and low lipid-producing strains of M. circinelloides to predict the possible roles of AMPK in lipid metabolism and to select candidate genes for further studies to enhance lipid accumulation. RESULTS: Two genes for α-subunit, one for ß-subunit and six for γ-subunit were identified and annotated. Bioinformatic analysis confirmed the presence of typical conserved domains in these genes. Furthermore, transcriptional profiling displayed marked differences in expression kinetics of subunits among the selected strains. The expression of AMPK genes decreased rapidly in WJ11, high lipid producer strain during the lipid accumulation phase while contrasting profile of expression was observed in CBS 277.49, low lipid producer strain. CONCLUSION: The present study has shown the association of AMPK genes with lipid metabolism at the transcriptional level. The involvement of Snf-α1, Snf-α2, Snf-ß, Snf-γ1, Snf-γ4, Snf-γ5 subunits were shown to be more pronounced and could potentially be further explored in future studies.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Fúngicas , Mucor , Proteínas Quinases Ativadas por AMP/classificação , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Biologia Computacional , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Anotação de Sequência Molecular , Mucor/enzimologia , Mucor/genética , Mucor/metabolismo , Transcriptoma/genética
4.
World J Microbiol Biotechnol ; 38(1): 10, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34866162

RESUMO

In recent years, the utilisation of endophytes has emerged as a promising biological treatment technology for the degradation of plastic wastes such as biodegradation of synthetic plastics. This study, therefore, aimed to explore and extensively screen endophytic fungi (from selected plants) for efficient in vitro polyvinyl alcohol (PVA) biodegradation. In total, 76 endophytic fungi were isolated and cultivated on a PVA screening agar medium. Among these fungi, 10 isolates showed potential and were subsequently identified based on phenotypical characteristics, ITS ribosomal gene sequences, and phylogenetic analyses. Four strains exhibited a maximum level of PVA-degradation in the liquid medium when cultivated for 10 days at 28 °C and 150 rpm. These strains showed varied PVA removal rates of 81% (Penicillium brevicompactum OVR-5), 67% (Talaromyces verruculosus PRL-2), 52% (P. polonicum BJL-9), and 41% (Aspergillus tubingensis BJR-6) respectively. The most promising PVA biodegradation isolate 'OVR-5', with an optimal pH at 7.0 and optimal temperature at 30 °C, produced lipase, manganese peroxidase, and laccase enzymes. Based on analyses of its metabolic intermediates, as identified with GC-MS, we proposed the potential PVA degradation pathway of OVR-5. Biodegradation results were confirmed through scanning electron microscopy and Fourier transform infrared spectroscopy. This study provides the first report on an endophytic P. brevicompactum strain (associated with Orychophragmus violaceus) that has a great ability for PVA degradation providing more insight on potential fungus-based applications in plastic waste degradation.


Assuntos
Penicillium/crescimento & desenvolvimento , Plásticos/análise , Álcool de Polivinil/análise , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Rizosfera , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Bioresour Technol ; 398: 130540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452954

RESUMO

This study aimed to improve the lipid and biomass yields of Mucor circinelloides WJ11 by implementing four different fed-batch fermentation strategies, varied in time and glucose concentration (S1-S4). The S1 fermentation strategy yielded the highest biomass, lipid, and fatty acid content (22 ± 0.7 g/L, 53 ± 1.2 %, and 28 ± 1.6 %) after 120 and 144 h, respectively. The γ-linolenic acid titer of 0.75 ± 0.0 g/L was greatest in S3 after 48 h. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the transcription of key genes involved in lipid accumulation. The glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase genes showed increased expression levels. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the biochemical profile during fermentation strategies. Optimal abiotic factors for production efficiency included pH 6.5, 25-26 °C, 15 % (v/v) inoculum, 500 rpm, 20 %-30 % dissolved oxygen, and 120 h fermentation. Glucose co-feeding offers valuable insights to develop effective fermentation strategies for lipid production.


Assuntos
Ácidos Graxos , Mucor , Fermentação , Biomassa , Mucor/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo
6.
J Fungi (Basel) ; 9(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233289

RESUMO

Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.

7.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962871

RESUMO

Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.

8.
Mol Biotechnol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934390

RESUMO

Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.

9.
Front Nutr ; 9: 876649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558745

RESUMO

Thraustochytrids, such as Aurantiochytrium and Schizochytrium, have been shown as a promising sustainable alternative to fish oil due to its ability to accumulate a high level of docosahexaenoic acid (DHA) from its total fatty acids. However, the low DHA volumetric yield by most of the wild type (WT) strain of thraustochytrids which probably be caused by the low oxidative stress tolerance as well as a limited supply of key precursors for DHA biosynthesis has restricted its application for industrial application. Thus, to enhance the DHA production, we aimed to generate Aurantiochytrium SW1 mutant with high tolerance toward oxidative stress and high glucose-6 phosphate dehydrogenase (G6PDH) activities through strategic plasma mutagenesis coupled with chemical screening. The WT strain (Aurantiochytrium sp. SW1) was initially exposed to plasma radiation and was further challenged with zeocin and polydatin, generating a mutant (YHPM1) with a 30, 65, and 80% higher overall biomass, lipid, and DHA production in comparison with the parental strains, respectively. Further analysis showed that the superior growth, lipid, and DHA biosynthesis of the YHMP1 were attributed not only to the higher G6PDH and enzymes involved in the oxidative defense such as superoxide dismutase (SOD) and catalase (CAT) but also to other key metabolic enzymes involved in lipid biosynthesis. This study provides an effective approach in developing the Aurantiochytrium sp. mutant with superior DHA production capacity that has the potential for industrial applications.

10.
Front Nutr ; 9: 876817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592629

RESUMO

In this study, 18 standard amino acids were tested as a single nitrogen source on biomass, total lipid, total fatty acid (TFA) production, and yield of γ-linolenic acid (GLA) in Rhizomucor pusillus AUMC 11616.A and Mucor circinelloides AUMC 6696.A isolated from unusual habitats. Grown for 4 days at 28°C, shaking at 150 rpm, the maximum fungal biomass for AUMC 6696.A was 14.6 ± 0.2 g/L with arginine and 13.68 ± 0.1 g/L with asparagine, when these amino acids were used as single nitrogen sources, while AUMC 11616.A maximum biomass was 10.73 ± 0.8 g/L with glycine and 9.44 ± 0.6 g/L with valine. These were significantly higher than the ammonium nitrate control (p < 0.05). The highest levels of TFA were achieved with glycine for AUMC 11616.A, 26.2 ± 0.8% w/w of cell dry weight, and glutamic acid for AUMC 6696.A, 23.1 ± 1.3%. The highest GLA yield was seen with proline for AUMC 11616.A, 13.4 ± 0.6% w/w of TFA, and tryptophan for AUMC 6696.A, 12.8 ± 0.3%, which were 38% and 25% higher than the ammonium tartrate control. The effects of environmental factors such as temperature, pH, fermentation time, and agitation speed on biomass, total lipids, TFA, and GLA concentration of the target strains have also been investigated. Our results demonstrated that nitrogen assimilation through amino acid metabolism, as well as the use of glucose as a carbon source and abiotic factors, are integral to increasing the oleaginicity of tested strains. Few studies have addressed the role of amino acids in fermentation media, and this study sheds light on R. pusillus and M. circinelloides as promising candidates for the potential applications of amino acids as nitrogen sources in the production of lipids.

11.
J Fungi (Basel) ; 8(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35330267

RESUMO

Mucor circinelloides, an oleaginous filamentous fungus, is gaining popularity due to its ability to synthesize significant amounts of lipids containing γ-linolenic acid (GLA) that have important health benefits. Malic enzyme (ME), which serves as the main source of NADPH in some fungi, has been found to regulate lipid accumulation in oleaginous fungi. In the present study, the role of two cytosolic ME genes, cmalA and cmalB, in the lipid accumulation of the M. circinelloides high-lipid-producing strain WJ11, was evaluated. Strains overexpressing cmalA and cmalB showed a 9.8- and 6.4-fold rise in specific ME activity, respectively, and an elevation of the lipid content by 23.2% and 5.8%, respectively, suggesting that these genes are involved in lipid biosynthesis. Due to increased lipid accumulation, overall GLA content in biomass was observed to be elevated by 11.42% and 16.85% in cmalA and cmalB overexpressing strains, respectively. Our study gives an important insight into different studies exploring the role of the cmalA gene, while we have for the first time investigated the role of the cmalB gene in the M. circinelloides WJ11 strain.

12.
PLoS One ; 17(3): e0264654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259187

RESUMO

INTRODUCTION: The genomic miscellany of malaria parasites can help inform the intensity of malaria transmission and identify potential deficiencies in malaria control programs. This study was aimed at investigating the genomic miscellany, allele frequencies, and MOI of P. falciparum infection. METHODS: A total of 85 P. falciparum confirmed isolates out of 100 were included in this study that were collected from P. falciparum patients aged 4 months to 60 years in nine districts of Khyber Pakhtunkhwa Province. Parasite DNA was extracted from 200µL whole blood samples using the Qiagen DNA extraction kit following the manufacturer's instructions. The polymorphic regions of msp-1, msp-2 and glurp loci were genotyped using nested PCR followed by gel electrophoresis for amplified fragments identification and subsequent data analysis. RESULTS: Out of 85 P. falciparum infections detected, 30 were msp-1 and 32 were msp-2 alleles specific. Successful amplification occurred in 88.23% (75/85) isolates for msp-1, 78.9% (67/85) for msp-2 and 70% (60/85) for glurp gene. In msp-1, the K1 allelic family was predominantly prevalent as 66.66% (50/75), followed by RO33 and MAD20. The frequency of samples with single infection having only K1, MAD20 and RO33 were 21.34% (16/75), 8% (6/75), and 10.67% (8/75), respectively. In msp-2, both the FC27 and 3D7 allelic families revealed almost the same frequencies as 70.14% (47/67) and 67.16% (45/67), respectively. Nine glurp RII region alleles were identified in 60 isolates. The overall mean multiplicity of infection for msp genes was 1.6 with 1.8 for msp-1 and 1.4 for msp-2, while for glurp the MOI was 1.03. There was no significant association between multiplicity of infection and age groups (Spearman's rank coefficient = 0.050; P = 0.6) while MOI and parasite density correlated for only msp-2 allelic marker. CONCLUSIONS: The study showed high genetic diversity and allelic frequency with multiple clones of msp-1, msp-2 and glurp in P. falciparum isolates in Khyber Pakhtunkhwa, Pakistan. In the present study the genotype data may provide valuable information essential for monitoring the impact of malaria eradication efforts in this region.


Assuntos
Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Alelos , Antígenos de Protozoários/genética , Frequência do Gene , Variação Genética , Genótipo , Humanos , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Paquistão , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
13.
Sci Rep ; 12(1): 13111, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908106

RESUMO

This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.


Assuntos
Bacillus , Ácido gama-Linolênico , Bacillus subtilis , Celobiose , Técnicas de Cocultura , Fermentação , Mucor , Estudos Prospectivos
14.
Front Microbiol ; 13: 919364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814694

RESUMO

Mucor circinelloides serves as a model organism to investigate the lipid metabolism in oleaginous microorganisms. It is considered as an important producer of γ-linolenic acid (GLA) that has vital medicinal benefits. In this study, we used WJ11, a high lipid-producing strain of M. circinelloides (36% w/w lipid, cell dry weight, CDW), to examine the role in lipid accumulation of two mitochondrial malic enzyme (ME) genes malC and malD. The homologous overexpression of both malC and malD genes enhanced the total lipid content of WJ11 by 41.16 and 32.34%, respectively. In parallel, the total content of GLA was enhanced by 16.73 and 46.76% in malC and malD overexpressing strains, respectively, because of the elevation of total lipid content. The fact that GLA content was enhanced more in the strain with lower lipid content increase and vice versa, indicated that engineering of mitochondrial MEs altered the fatty acid profile. Our results reveal that mitochondrial ME plays an important role in lipid metabolism and suggest that future approaches may involve simultaneous overexpression of distinct ME genes to boost lipid accumulation even further.

15.
J Fungi (Basel) ; 7(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947043

RESUMO

Mucorales is the largest and most well-studied order of the phylum Mucormycota and is known for its rapid growth rate and various industrial applications. The Mucorales fungi are a fascinating group of filamentous organisms with many uses in research and the industrial and medical fields. They are widely used biotechnological producers of various secondary metabolites and other value-added products. Certain members of Mucorales are extensively used as model organisms for genetic and molecular investigation and have extended our understanding of the metabolisms of other members of this order as well. Compared with other fungal species, our understanding of Mucoralean fungi is still in its infancy, which could be linked to their lack of effective genetic tools. However, recent advancements in molecular tools and approaches, such as the construction of recyclable markers, silencing vectors, and the CRISPR-Cas9-based gene-editing system, have helped us to modify the genomes of these model organisms. Multiple genetic modifications have been shown to generate valuable products on a large scale and helped us to understand the morphogenesis, basic biology, pathogenesis, and host-pathogen interactions of Mucoralean fungi. In this review, we discuss various conventional and modern genetic tools and approaches used for efficient gene modification in industrially important members of Mucorales.

16.
Front Nutr ; 8: 756218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722614

RESUMO

Canthaxanthin is a reddish-orange xanthophyll with strong antioxidant activity and higher bioavailability than carotenes, primarily used in food, cosmetics, aquaculture, and pharmaceutical industries. The spiking market for natural canthaxanthin promoted researchers toward genetic engineering of heterologous hosts for canthaxanthin production. Mucor circinelloides is a dimorphic fungus that produces ß-carotene as the major carotenoid and is considered as a model organism for carotenogenic studies. In this study, canthaxanthin-producing M. circinelloides strain was developed by integrating the codon-optimized ß-carotene ketolase gene (bkt) of the Haematococcus pluvialis into the genome of the fungus under the control of strong promoter zrt1. First, a basic plasmid was constructed to disrupt crgA gene, a negative regulator of carotene biosynthesis resulted in substantial ß-carotene production, which served as the building block for canthaxanthin by further enzymatic reaction of the ketolase enzyme. The genetically engineered strain produced a significant amount (576 ± 28 µg/g) of canthaxanthin, which is the highest amount reported in Mucor to date. Moreover, the cell dry weight of the recombinant strain was also determined, producing up to more than 9.0 g/L, after 96 h. The mRNA expression level of bkt in the overexpressing strain was analyzed by RT-qPCR, which increased by 5.3-, 4.1-, and 3-folds at 24, 48, and 72 h, respectively, compared with the control strain. The canthaxanthin-producing M. circinelloides strain obtained in this study provided a basis for further improving the biotechnological production of canthaxanthin and suggested a useful approach for the construction of more valuable carotenoids, such as astaxanthin.

17.
Biomed Res Int ; 2020: 3621543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204691

RESUMO

γ-Linolenic acid (GLA) and carotenoids have attracted much interest due to their nutraceutical and pharmaceutical importance. Mucoromycota, typical oleaginous filamentous fungi, are known for their production of valuable essential fatty acids and carotenoids. In the present study, 81 fungal strains were isolated from different Egyptian localities, out of which 11 Mucoromycota were selected for further GLA and carotenoid investigation. Comparative analysis of total lipids by GC of selected isolates showed that GLA content was the highest in Rhizomucor pusillus AUMC 11616.A, Mucor circinelloides AUMC 6696.A, and M. hiemalis AUMC 6031 that represented 0.213, 0.211, and 0.20% of CDW, respectively. Carotenoid analysis of selected isolates by spectrophotometer demonstrated that the highest yield of total carotenoids (640 µg/g) was exhibited by M. hiemalis AUMC 6031 and M. hiemalis AUMC 6695, and these isolates were found to have a similar carotenoid profile with, ß-carotene (65%), zeaxanthin (34%), astaxanthin, and canthaxanthin (5%) of total carotenoids. The total fatty acids of all tested isolates showed moderate antimicrobial activity against Staphylococcus aureus and Salmonella Typhi, and Penicillium chrysogenum. To the best of our knowledge, this is the first report on the highest yield of total lipid accumulation (51.74% CDW) by a new oleaginous fungal isolate R. pusillus AUMC 11616.A. A new scope for a further study on this strain will be established to optimize and improve its total lipids with high GLA production. So, R. pusillus AUMC 11616.A might be a potential candidate for industrial application.


Assuntos
Carotenoides/metabolismo , Ácido Linoleico/biossíntese , Mucor/metabolismo , Rhizomucor/metabolismo , Ácido gama-Linolênico/metabolismo , Anti-Infecciosos/farmacologia , Egito , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Liofilização , Metabolismo dos Lipídeos , Testes de Sensibilidade Microbiana , Mucor/química , Mucor/genética , Mucor/isolamento & purificação , Filogenia , Rhizomucor/química , Rhizomucor/genética , Rhizomucor/isolamento & purificação
18.
Metabolites ; 10(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963282

RESUMO

Carotenoids are natural potent antioxidants and free radical scavengers which are able to modulate the pathogenesis of some cancers and heart diseases in human, indicating their importance in being provided through the diet. Mucor circinelloides accumulates ß-carotene as the main carotenoid compound and has been used as a model organism in carotenogenic studies. In the present study, the potential of two M. circinelloides strains to accumulate ß-carotene was investigated under light and dark conditions. The results, which were quantitated by HPLC, showed that CBS 277.49 accumulated higher pigment in comparison to WJ11 under both conditions. Continuous illumination triggered the pigment accumulation up to 2.7-fold in strain CBS 277.49 and 2.2-fold in strain WJ11 in comparison to dark. The mRNA analysis of the four key genes involved in isoprenoid pathway by RT-qPCR showed higher transcriptional levels in CBS 277.49 as compared to WJ11, indicating that the pigment production metabolic machinery is more active in CBS 277.49 strain. A new scope for further research was established by this work for improved ß-carotene production in the high producing strain CBS 277.49.

19.
Biomed Res Int ; 2020: 8890269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457420

RESUMO

Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of ß-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance ß-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of ß-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior ß-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the ß-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 µg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum ß-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced ß-carotene production in CBS 277.49.


Assuntos
Carotenoides/metabolismo , Ácido Mevalônico/metabolismo , Mucor , beta Caroteno/biossíntese , Antifúngicos/química , Fenômenos Bioquímicos , Carbono/química , Cerulenina/química , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/química , Fermentação , Microbiologia Industrial , Cetoconazol/química , Lipídeos/química
20.
Biomed Res Int ; 2020: 8256809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110920

RESUMO

Human liver cancer has emerged as a serious health concern in the world, associated with poorly available therapies. The Berberis genus contains vital medicinal plants with miraculous healing properties and a wide range of bioactivities. In this study, different crude extracts of B. lycium Royle were prepared and screened against Human Hepatocarcinoma (HepG2) cell lines. The water/ethanolic extract of B. lycium Royle (BLE) exhibited significant antiproliferative activity against the HepG2 cancer cell line with an IC50 value of 47 µg/mL. The extract decreased the clonogenic potential of HepG2 cells in a dose-dependent manner. It induced apoptotic cell death in HepG2 cells that were confirmed by cytometric analysis and microscopic examination of cellular morphology through DAPI-stained cells. Biochemical evidence of apoptosis came from elevating the intracellular ROS level that was accompanied by the loss of mitochondrial membrane potential. The mechanism of apoptosis was further confirmed by gene expression analysis using RT-qPCR that revealed the decline in Bcl-2 independent of p53 mRNA and a rise in CDK1 while downregulating CDK5, CDK9, and CDK10 mRNA levels at 48 h of BLE treatment. The most active fraction was subjected to HPLC which indicated the presence of berberine (48 µg/mL) and benzoic acid (15.8 µg/mL) as major compounds in BLE and a trace amount of luteolin, rutin, and gallic acid. Our study highlighted the importance of the most active BLE extract as an excellent source of nutraceuticals against Human Hepatocarcinoma that can serve as an herbal natural cure against liver cancer.


Assuntos
Antineoplásicos/farmacologia , Berberis/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Lycium/química , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Berberina/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA