Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 177(5): 1346-1360.e24, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080068

RESUMO

To decipher dynamic brain information processing, current genetically encoded calcium indicators (GECIs) are limited in single action potential (AP) detection speed, combinatorial spectral compatibility, and two-photon imaging depth. To address this, here, we rationally engineered a next-generation quadricolor GECI suite, XCaMPs. Single AP detection was achieved within 3-10 ms of spike onset, enabling measurements of fast-spike trains in parvalbumin (PV)-positive interneurons in the barrel cortex in vivo and recording three distinct (two inhibitory and one excitatory) ensembles during pre-motion activity in freely moving mice. In vivo paired recording of pre- and postsynaptic firing revealed spatiotemporal constraints of dendritic inhibition in layer 1 in vivo, between axons of somatostatin (SST)-positive interneurons and apical tufts dendrites of excitatory pyramidal neurons. Finally, non-invasive, subcortical imaging using red XCaMP-R uncovered somatosensation-evoked persistent activity in hippocampal CA1 neurons. Thus, the XCaMPs offer a critical enhancement of solution space in studies of complex neuronal circuit dynamics. VIDEO ABSTRACT.


Assuntos
Potenciais de Ação/fisiologia , Axônios/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Animais , Córtex Cerebral/citologia , Feminino , Hipocampo/citologia , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley
2.
Opt Express ; 32(5): 7289-7306, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439413

RESUMO

High-speed three-dimensional (3D) imaging is essential for revealing the structure and functions of biological specimens. Confocal laser scanning microscopy has been widely employed for this purpose. However, it requires a time-consuming image-stacking procedure. As a solution, we previously developed light needle microscopy using a Bessel beam with a wavefront-engineered approach [Biomed. Opt. Express13, 1702 (2022)10.1364/BOE.449329]. However, this method applies only to multiphoton excitation microscopy because of the requirement to reduce the sidelobes of the Bessel beam. Here, we introduce a beam that produces a needle spot while eluding the intractable artifacts due to the sidelobes. This beam can be adopted even in one-photon excitation fluorescence 3D imaging. The proposed method can achieve real-time, rapid 3D observation of 200-nm particles in water at a rate of over 50 volumes per second. In addition, fine structures, such as the spines of neurons in fixed mouse brain tissue, can be visualized in 3D from a single raster scan of the needle spot. The proposed method can be applied to various modalities in biological imaging, enabling rapid 3D image acquisition.

3.
BMC Bioinformatics ; 22(1): 91, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637042

RESUMO

BACKGROUND: To effectively detect and investigate various cell-related diseases, it is essential to understand cell behaviour. The ability to detection mitotic cells is a fundamental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) have been successfully applied to object detection tasks, however, when applied to mitotic cell detection, most existing methods generate high false-positive rates due to the complex characteristics that differentiate normal cells from mitotic cells. Cell size and orientation variations in each stage make detecting mitotic cells difficult in 2D approaches. Therefore, effective extraction of the spatial and temporal features from mitotic data is an important and challenging task. The computational time required for detection is another major concern for mitotic detection in 4D microscopic images. RESULTS: In this paper, we propose a backbone feature extraction network named full scale connected recurrent deep layer aggregation (RDLA++) for anchor-free mitotic detection. We utilize a 2.5D method that includes 3D spatial information extracted from several 2D images from neighbouring slices that form a multi-stream input. CONCLUSIONS: Our proposed technique addresses the scale variation problem and can efficiently extract spatial and temporal features from 4D microscopic images, resulting in improved detection accuracy and reduced computation time compared with those of other state-of-the-art methods.


Assuntos
Microscopia , Redes Neurais de Computação , Fenômenos Fisiológicos Celulares
4.
Plant Cell Physiol ; 62(2): 229-247, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33355344

RESUMO

In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.


Assuntos
Autofagia/fisiologia , Mitocôndrias/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/fisiologia , Mitocôndrias/efeitos da radiação , Mitofagia/fisiologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta/efeitos adversos
5.
Biochem Biophys Res Commun ; 529(2): 238-242, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703417

RESUMO

High-speed imaging of living specimen was performed using two-photon microscopy equipped with a spinning-disk scanning unit. Typically, a high-peak-power laser light source is needed to simultaneously induce two-photon excitation processes at several hundred focal points, generating the limitations of excitable fluorophores. Therefore, a high-peak-power neodymium-based 918-nm laser light source was used for intravital imaging of the most popular fluorophores, green fluorescent proteins. As a result, the proposed system obtained approximately 30 times brighter fluorescent signal than that obtained using a conventional mode-locked titanium:sapphire laser light source. Furthermore, the system visualized four-dimensional (xyz-t) calcium responses of pancreatic acinar cells agonist stimulations in the living G-CaMP7-expressing mouse with 60 million µm3 volume.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Microscopia de Fluorescência/instrumentação , Células Acinares/ultraestrutura , Animais , Desenho de Equipamento , Lasers , Camundongos , Pâncreas/ultraestrutura , Pele/ultraestrutura
6.
Exp Cell Res ; 376(1): 67-76, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711568

RESUMO

Nonmuscle myosin II (NMII) plays an important role in cytokinesis by constricting a contractile ring. However, it is poorly understood how NMII isoforms contribute to cytokinesis in mammalian cells. Here, we investigated the roles of the two major NMII isoforms, NMIIA and NMIIB, in cytokinesis using a WI-38 VA13 cell line (human immortalized fibroblast). In this cell line, NMIIB tended to localize to the contractile ring more than NMIIA. The expression level of NMIIA affected the localization of NMIIB. Most NMIIB accumulated at the cleavage furrow in NMIIA-knockout (KO) cells, and most NMIIA was displaced from this location in exogenous NMIIB-expressing cells, indicating that NMIIB preferentially localizes to the contractile ring. Specific KO of each isoform elicited opposite effects. The rate of furrow ingression was decreased and increased in NMIIA-KO and NMIIB-KO cells, respectively. Meanwhile, the length of NMII-filament stacks in the contractile ring was increased and decreased in NMIIA-KO and NMIIB-KO cells, respectively. Moreover, NMIIA helped to maintain cortical stiffness during cytokinesis. These findings suggest that appropriate ratio of NMIIA and NMIIB in the contractile ring is important for proper cytokinesis in specific cell types. In addition, two-photon excitation spinning-disk confocal microscopy enabled us to image constriction of the contractile ring in live cells in a three-dimensional manner.


Assuntos
Citocinese/genética , Contração Muscular/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Citoesqueleto de Actina/genética , Linhagem Celular , Linhagem da Célula/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Isoformas de Proteínas/genética
7.
Eur J Neurosci ; 47(9): 1033-1042, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512842

RESUMO

Three-dimensional (3D) super-resolution microscopy technique structured illumination microscopy (SIM) imaging of dendritic spines along the dendrite has not been previously performed in fixed tissues, mainly due to deterioration of the stripe pattern of the excitation laser induced by light scattering and optical aberrations. To address this issue and solve these optical problems, we applied a novel clearing reagent, LUCID, to fixed brains. In SIM imaging, the penetration depth and the spatial resolution were improved in LUCID-treated slices, and 160-nm spatial resolution was obtained in a large portion of the imaging volume on a single apical dendrite. Furthermore, in a morphological analysis of spine heads of layer V pyramidal neurons (L5PNs) in the medial prefrontal cortex (mPFC) of chronic dexamethasone (Dex)-treated mice, SIM imaging revealed an altered distribution of spine forms that could not be detected by high-NA confocal imaging. Thus, super-resolution SIM imaging represents a promising high-throughput method for revealing spine morphologies in single dendrites.


Assuntos
Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Feminino , Imageamento Tridimensional/métodos , Lasers , Luz , Iluminação , Camundongos Transgênicos , Microscopia/métodos
8.
Exp Dermatol ; 27(5): 563-570, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29700854

RESUMO

The epidermis, the outermost layer of the skin, retains moisture and functions as a physical barrier against the external environment. Epidermal cells are continuously replaced by turnover, and thus to understand in detail the dynamic cellular events in the epidermis, techniques to observe live tissues in 3D are required. Here, we established a live 3D imaging technique for epidermis models. We first obtained immortalized human epidermal cell lines which have a normal differentiation capacity and fluorescence-labelled cytoplasm or nuclei. The reconstituted 3D epidermis was prepared with these lines. Using this culture system, we were able to observe the structure of the reconstituted epidermis live in 3D, which was similar to an in vivo epidermis, and evaluate the effect of a skin irritant. This technique may be useful for dermatological science and drug development.


Assuntos
Epiderme , Queratinócitos/metabolismo , Modelos Biológicos , Técnicas de Cultura de Células , Linhagem Celular , Dermatite de Contato , Humanos , Imageamento Tridimensional , Proteínas Luminescentes
9.
BMC Bioinformatics ; 15: 415, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25523409

RESUMO

BACKGROUND: Recent advances in microscopy enable the acquisition of large numbers of tomographic images from living tissues. Three-dimensional microscope images are often displayed with volume rendering by adjusting the transfer functions. However, because the emissions from fluorescent materials and the optical properties based on point spread functions affect the imaging results, the intensity value can differ locally, even in the same structure. Further, images obtained from brain tissues contain a variety of neural structures such as dendrites and axons with complex crossings and overlapping linear structures. In these cases, the transfer functions previously used fail to optimize image generation, making it difficult to explore the connectivity of these tissues. RESULTS: This paper proposes an interactive visual exploration method by which the transfer functions are modified locally and interactively based on multidimensional features in the images. A direct editing interface is also provided to specify both the target region and structures with characteristic features, where all manual operations can be performed on the rendered image. This method is demonstrated using two-photon microscope images acquired from living mice, and is shown to be an effective method for interactive visual exploration of overlapping similar structures. CONCLUSIONS: An interactive visualization method was introduced for local improvement of visualization by volume rendering in two-photon microscope images containing regions in which linear nerve structures crisscross in a complex manner. The proposed method is characterized by the localized multidimensional transfer function and interface where the parameters can be determined by the user to suit their particular visualization requirements.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Software , Animais , Vasos Sanguíneos/citologia , Dendritos/metabolismo , Fígado/citologia , Camundongos , Neurônios/citologia , Interface Usuário-Computador
10.
Dev Biol ; 376(1): 23-30, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357539

RESUMO

In the node of mouse embryo, rotational movements of cilia generate an external liquid flow known as nodal flow, which determines left-right asymmetric gene expression. How nodal flow is converted into asymmetric gene expression is still controversial, but the increase of Ca(2+) levels in endodermal cells to the left of the node has been proposed to play a role. However, Ca(2+) signals inside the node itself have not yet been described. By our optimized Ca(2+) imaging method, we were able to observe dynamic Ca(2+) signals in the node in live mouse embryos. Pharmacological disruption of Ca(2+) signals did not affect ciliary movements or nodal flow, but did alter the expression patterns of the Nodal and Cerl-2 genes. Quantitative analyses of Ca(2+) signal frequencies and distributions showed that during left-right axis establishment, formerly symmetric Ca(2+) signals became biased to the left side. In iv/iv mutant embryos that showed randomized laterality due to ciliary immotility, Ca(2+) signals were found to be variously left-sided, right-sided, or bilateral, and thus symmetric on average. In Pkd2 mutant embryos, which lacked polycystin-2, a Ca(2+)-permeable cation channel necessary for left-right axis formation, the Ca(2+) signal frequency was lower than in wild-type embryos. Our data support a model in which dynamic Ca(2+) signals in the node are involved in left-right patterning.


Assuntos
Padronização Corporal/fisiologia , Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organizadores Embrionários/embriologia , Animais , Cílios/fisiologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína Nodal/metabolismo , Organizadores Embrionários/metabolismo , Canais de Cátion TRPP/genética
11.
Opt Express ; 22(23): 28215-21, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402061

RESUMO

Transmissive liquid crystal devices (tLCDs) enable the modification of optical properties, such as phase, polarization, and laser light intensity, over a wide wavelength region at a high conversion efficiency. By utilizing tLCDs, we developed a new two-photon excitation stimulated emission depletion microscopy technique based on a conventional two-photon microscope. Spatial resolution was improved by compensating for phase shifts distributed in the optical path. Using this technique, we observed the fine structures of microtubule networks in fixed biological cells.


Assuntos
Cristais Líquidos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Fótons , Desenho de Equipamento
12.
Opt Express ; 22(5): 5746-53, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663912

RESUMO

In this study, we investigated the picosecond optical pulse generation from a 1064-nm distributed feedback laser diode under strong gain switching. The spectrum of the generated optical pulses was manipulated in two different ways: (i) by extracting the short-wavelength components of the optical pulse spectrum and (ii) by compensating for spectral chirping in the extracted mid-spectral region. Both of these methods shortened the optical pulse duration to approximately 7 ps. These optical pulses were amplified to over 20-kW peak power for two-photon microscopy. We obtained clear two-photon images of neurons in a fixed brain slice of H-line mouse expressing enhanced yellow fluorescent protein. Furthermore, a successful experiment was also confirmed for in vivo deep region H-line mouse brain neuron imaging.

13.
Int J Mol Sci ; 15(11): 19971-86, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25372943

RESUMO

Yellow Cameleons are genetically encoded Ca2+ indicators in which cyan and yellow fluorescent proteins and calmodulin work together as a fluorescence (Förster) resonance energy transfer Ca2+-sensor probe. To achieve ultrasensitive Ca2+ imaging for low resting Ca2+ or small Ca2+ transients in various organs, we generated a transgenic mouse line expressing the highest-sensitive genetically encoded Ca2+ indicator (Yellow Cameleon-Nano 15) in the whole body. We then focused on the mechanism of exocytotic events mediated by intracellular Ca2+ signaling in acinar cells of the mice with an agonist and observed them by two-photon excitation microscopy. In the results, two-photon excitation imaging of Yellow Cameleon-Nano 15 successfully visualized intracellular Ca2+ concentration under stimulation with the agonist at nanomolar levels. This is the first demonstration for application of genetically encoded Ca2+ indicators to pancreatic acinar cells. We also simultaneously observed exocytotic events and an intracellular Ca2+ concentration under in vivo condition. Yellow Cameleon-Nano 15 mice are healthy and no significant deteriorative effect was observed on physiological response regarding the pancreatic acinar cells. The dynamic range of 165% was calculated from Rmax and Rmin values under in vivo condition. The mice will be useful for ultrasensitive Ca2+ imaging in vivo.


Assuntos
Células Acinares/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Pâncreas/citologia , Acetilcolina/farmacologia , Células Acinares/citologia , Animais , Ionóforos de Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Exocitose/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , RNA Mensageiro/metabolismo
14.
Brain Nerve ; 76(7): 807-812, 2024 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-38970316

RESUMO

Two-photon excitation microscopy enables in vivo deep-tissue imaging within organisms. This technique is based on two-photon excitation, a nonlinear optical process that uses near-infrared light for excitation, resulting in high tissue permeability. Notably, two-photon excitation occurs only near the focal plane; therefore, minimally invasive tomographic images can be obtained. Owing to these features, two-photon excitation microscopy is currently widely used in medical and life-science research, particularly in the domain of neuroscience for in vivo visualization of deep tissues. However, the use of long-wavelength excitation light in two-photon excitation microscopy has resulted in a larger focused spot size and relatively low spatial resolution, which is a limitation of this technique for further applications. Recent studies have described super-resolution microscopy techniques applied to two-photon excitation microscopy in an attempt to observe living organisms "as they are in their natural state" with high spatial resolution. We have also addressed this topic using an optical approach (two-photon stimulated emission depletion microscopy) and an image analysis approach (two-photon super-resolution radial fluctuation). Here, we describe these approaches together with a discussion of our recent accomplishments.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Animais , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons , Microscopia/métodos , Processamento de Imagem Assistida por Computador/métodos
15.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517380

RESUMO

Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Actinas/genética , Actinas/metabolismo , Claudinas/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Células Madin Darby de Rim Canino , Animais , Cães
16.
Commun Biol ; 7(1): 232, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438546

RESUMO

Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.


Assuntos
Artefatos , Polímeros de Fluorcarboneto , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Cerebelo , Resinas Vegetais , Neuroimagem , Mamíferos
17.
Biomed Opt Express ; 15(2): 1089-1101, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404301

RESUMO

This study presents an alternative approach for two-photon volumetric imaging that combines multibeam lateral scanning with continuous axial scanning using a confocal spinning-disk scanner and an electrically focus tunable lens. Using this proposed system, the brain of a living mouse could be imaged at a penetration depth of over 450 µm from the surface. In vivo volumetric Ca2+ imaging at a volume rate of 1.5 Hz within a depth range of 130-200 µm, was segmented with an axial pitch of approximately 5-µm and revealed spontaneous activity of neurons with their 3D positions. This study offers a practical microscope design equipped with compact scanners, a simple control system, and readily adjustable imaging parameters, which is crucial for the widespread adoption of two-photon volumetric imaging.

18.
Nat Commun ; 15(1): 4941, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866781

RESUMO

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.


Assuntos
Encéfalo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Humanos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Imageamento Tridimensional/métodos , Linhagem Celular Tumoral
19.
Biophys Physicobiol ; 20(1): e200009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234851

RESUMO

Two-photon excitation laser scanning microscopy (TPLSM) has provided many insights into the life sciences, especially for thick biological specimens, because of its superior penetration depth and less invasiveness owing to the near-infrared wavelength of its excitation laser light. This paper introduces our four kinds of studies to improve TPLSM by utilizing several optical technologies as follows: (1) A high numerical aperture objective lens significantly deteriorates the focal spot size in deeper regions of specimens. Thus, approaches to adaptive optics were proposed to compensate for optical aberrations for deeper and sharper intravital brain imaging. (2) TPLSM spatial resolution has been improved by applying super-resolution microscopic techniques. We also developed a compact stimulated emission depletion (STED) TPLSM that utilizes electrically controllable components, transmissive liquid crystal devices, and laser diode-based light sources. The spatial resolution of the developed system was five times higher than conventional TPLSM. (3) Most TPLSM systems adopt moving mirrors for single-point laser beam scanning, resulting in the temporal resolution caused by the limited physical speed of these mirrors. For high-speed TPLSM imaging, a confocal spinning-disk scanner and newly-developed high-peak-power laser light sources enabled approximately 200 foci scanning. (4) Several researchers have proposed various volumetric imaging technologies. However, most technologies require large-scale and complicated optical setups based on deep expertise for microscopic technologies, resulting in a high threshold for biologists. Recently, an easy-to-use light-needle-creating device was proposed for conventional TPLSM systems to achieve one-touch volumetric imaging.

20.
Microscopy (Oxf) ; 72(2): 144-150, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130254

RESUMO

Two-photon excitation fluorescence microscopy [two-photon microscopy (2PM)] is a robust technique for understanding physiological phenomena from the cellular to tissue level, attributable to the nonlinear excitation process induced by near-infrared ultrashort laser light pulses. Recently, we have been promoting the use of semiconductor lasers, adaptive optics, vector beams and nanomaterials to improve the observation depth or spatial resolution. The developed semiconductor-based laser light source successfully visualized the structure of the enhanced yellow fluorescent protein (EYFP)-expressing neurons at the hippocampal dentate gyrus without resecting the neocortex and neuronal activity in the hippocampal cornu ammonis (CA1) region in anesthetized mice at video rates. We also proposed using fluoropolymer nanosheets of 100-nm thickness for in vivo imaging and realized a wide field of view during anesthetized mouse brain imaging of 1-mm depth. Furthermore, the developed adaptive optical 2PM visualized single dendritic spines of EYFP-expressing neurons in cortical layer V of the secondary motor cortex, which had been difficult to observe due to the curvature of the brain surface. In addition, we combined 2PM and stimulated emission depletion microscopy to improve spatial resolution. This combined microscopy is noninvasive and has a superior spatial resolution, exceeding the diffraction limit of the conventional light. In this review, we describe our recent results and discuss the future of 2PM.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Neurônios , Camundongos , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microscopia de Fluorescência , Hipocampo , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA