Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Nature ; 565(7740): 468-471, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30643207

RESUMO

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

3.
FASEB J ; 37(12): e23283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983957

RESUMO

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Microglia/metabolismo
4.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570102

RESUMO

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Assuntos
Dor Crônica , Estrogênios , Neuralgia , Neurônios , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Animais , Neuralgia/metabolismo , Masculino , Feminino , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Neurônios/metabolismo , Dor Crônica/metabolismo , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hiperalgesia/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
5.
Part Fibre Toxicol ; 19(1): 10, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135577

RESUMO

BACKGROUND: The gut microbiota plays a vital role in host homeostasis and is associated with inflammation and cardiovascular disease (CVD) risk. Exposure to particulate matter (PM) is a known mediator of inflammation and CVD and is reported to promote dysbiosis and decreased intestinal integrity. However, the role of inhaled traffic-generated PM on the gut microbiome and its corresponding systemic effects are not well-characterized. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) alters the gut microbiome and promotes microbial-related inflammation and CVD biomarkers. 4-6-week-old male C57Bl/6 mice on either a low-fat (LF, 10% fat) or high-fat (HF, 45% fat) diet were exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl saline or saline only (CON) 2x/week for 30 days. To determine whether probiotics could prevent diet or DEP exposure mediated alterations in the gut microbiome or systemic outcomes, a subset of animals on the HF diet were treated orally with 0.3 g/day (~ 7.5 × 108 CFU/day) of Winclove Ecologic® Barrier probiotics throughout the study. RESULTS: Our results show that inhaled DEP exposure alters gut microbial profiles, including reducing Actinobacteria and expanding Verrucomicrobia and Proteobacteria. We observed increased circulating LPS, altered circulating cytokines (IL-1α, IL-3, IL-13, IL-15, G-CSF, LIF, MIP-2, and TNF-α), and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in DEP-exposed and/or HF diet mice. Furthermore, probiotics attenuated the observed reduction of Actinobacteria and expansion of Proteobacteria in DEP-exposed and HF-diet mice. Probiotics mitigated circulating cytokines (IL-3, IL-13, G-CSF, RANTES, and TNF- α) and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in respect to DEP-exposure and/or HF diet. CONCLUSION: Key findings of this study are that inhaled DEP exposure alters small intestinal microbial profiles that play a role in systemic inflammation and early CVD biomarkers. Probiotic treatment in this study was fundamental in understanding the role of inhaled DEP on the microbiome and related systemic inflammatory and CVD biomarkers.


Assuntos
Doenças Cardiovasculares , Microbiota , Animais , Biomarcadores , Doenças Cardiovasculares/induzido quimicamente , Citocinas , Fator Estimulador de Colônias de Granulócitos , Inflamação/induzido quimicamente , Interleucina-13 , Interleucina-3 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado , Inibidor 1 de Ativador de Plasminogênio , Trombomodulina , Emissões de Veículos/toxicidade
6.
Part Fibre Toxicol ; 18(1): 3, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419468

RESUMO

BACKGROUND: Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP, suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS: Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS: Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.


Assuntos
Dieta Hiperlipídica , Emissões de Veículos , Animais , Líquido da Lavagem Broncoalveolar , Inflamação , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio , Material Particulado/toxicidade , RNA Ribossômico 16S , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Emissões de Veículos/toxicidade
7.
Ann Surg Oncol ; 27(13): 5121-5125, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32314157

RESUMO

BACKGROUND: Multiple adjuvant therapies for melanoma have been approved since 2015 based on randomized trials demonstrating improvements in recurrence-free survival (RFS) with adjuvant therapy after surgical resection of high-risk disease. Inclusion criteria for these trials required performance of a completion lymph node dissection (CLND) for positive sentinel lymph node (pSLN) disease. OBJECTIVE: We aimed to describe current practice for adjuvant therapies in patients with pSLN without CLND (active surveillance [AS]), and to evaluate recurrence in these patients. METHODS: Melanoma patients with pSLN between 2016 and 2019 were identified at two institutions. Demographic information, disease and treatment characteristics, and recurrence details were reviewed retrospectively. Patients were stratified by recurrence and patient-, treatment- and tumor-related characteristics were compared using Fisher's exact test and t test for categorical and continuous variables, respectively. RESULTS: Overall, 245 SLN biopsies were performed, of which 36 (14.7%) were pSLN. Of 36 pSLN, 4 underwent CLND and 32 underwent AS, of whom 22 (68.8%) received adjuvant therapy with the anti-programmed death-1 (PD1) inhibitor nivolumab (16/22), anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor ipilimumab (3/22), or BRAF/MEK inhibitors (3/22). At a median follow up of 13.3 months, 7/32 (21.9%) patients on AS recurred, including 4/22 (18.2%) who received adjuvant therapy and 3/10 (30.0%) who did not. Tumor ulceration was significantly associated with recurrence. While not significant, acral lentiginous subtype appeared more common among those with recurrence. CONCLUSION: The majority (68.8%) of patients with pSLN managed without CLND were treated with adjuvant therapy. The 1-year RFS for patients managed with adjuvant therapy without CLND was 82%, which is similar to modern adjuvant therapy trials requiring CLND.


Assuntos
Melanoma , Linfonodo Sentinela , Neoplasias Cutâneas , Humanos , Excisão de Linfonodo , Melanoma/patologia , Melanoma/cirurgia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Estadiamento de Neoplasias , Estudos Retrospectivos , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia
8.
Nano Lett ; 18(6): 3746-3751, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29775315

RESUMO

Next-generation, atomically thin devices require in-plane, one-dimensional heterojunctions to electrically connect different two-dimensional (2D) materials. However, the lattice mismatch between most 2D materials leads to unavoidable strain, dislocations, or ripples, which can strongly affect their mechanical, optical, and electronic properties. We have developed an approach to map 2D heterojunction lattice and strain profiles with subpicometer precision and the ability to identify dislocations and out-of-plane ripples. We collected diffraction patterns from a focused electron beam for each real-space scan position with a high-speed, high dynamic range, momentum-resolved detector-the electron microscope pixel array detector (EMPAD). The resulting four-dimensional (4D) phase space data sets contain the full spatially resolved lattice information on the sample. By using this technique on tungsten disulfide (WS2) and tungsten diselenide (WSe2) lateral heterostructures, we have mapped lattice distortions with 0.3 pm precision across multimicron fields of view and simultaneously observed the dislocations and ripples responsible for strain relaxation in 2D laterally epitaxial structures.

9.
J Struct Biol ; 202(1): 25-34, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29221896

RESUMO

Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Calcinose/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Idoso , Mama/patologia , Mama/ultraestrutura , Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Fenômenos Químicos , Feminino , Humanos , Mamografia , Microscopia Eletrônica , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Espectrometria por Raios X , Microtomografia por Raio-X
10.
Microsc Microanal ; 23(1): 155-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228169

RESUMO

Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon-sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon-sulfur composites synthesized for use as Li-S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

11.
Nano Lett ; 16(12): 7427-7432, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960512

RESUMO

Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 µm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.

12.
Microsc Microanal ; 22(4): 754-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27452123

RESUMO

A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 µm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

13.
Microsc Microanal ; 22(1): 237-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26750260

RESUMO

We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Transmissão e Varredura/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos
14.
Science ; 383(6685): 865-870, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386746

RESUMO

Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.

15.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246200

RESUMO

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Masculino , Feminino , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteínas da Mielina , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout
16.
Res Sq ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37674712

RESUMO

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP) [1-4]. To test the hypothesis that supraspinal circuitry is critical to pain chronification, we studied the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that following chronic constriction injury (CCI), pain resolves in males; however, female acute pain transitions to chronic. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38αMAPK and NF-κB activation in male cortical tissue; however, p38αMAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed similar behavioral results following CCI in NexCreERT2::p38αMAPKf/f mice. Previously, we established estrogen's ability to modulate sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP [5-9]. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lend "male-like" therapeutic relief to females following CCI. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.

17.
Ultramicroscopy ; 247: 113696, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804612

RESUMO

We demonstrate a combination of computational tools and experimental 4D-STEM methods to image the local magnetic moment in antiferromagnetic Fe2As with 6 angstrom spatial resolution. Our techniques utilize magnetic diffraction peaks, common in antiferromagnetic materials, to create imaging modes that directly visualize the magnetic lattice. Using this approach, we show that center-of-mass analysis can determine the local magnetization component in the plane perpendicular to the path of the electron beam. Moreover, we develop Magnstem, a quantum mechanical electron scattering simulation code, to model electron scattering of an angstrom-scale probe from magnetic materials. Using these tools, we identify optimal experimental conditions for separating weak magnetic signals from the much stronger interactions of an angstrom-scale probe with electrostatic potentials. Our techniques should be useful for characterizing the local magnetic order in systems such in thin films, interfaces, and domain boundaries of antiferromagnetic materials, which are difficult to probe with existing methods.

18.
PLoS One ; 18(2): e0279400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735677

RESUMO

Immunotherapy is an approved treatment option for head and neck squamous cell carcinoma (HNSCC). However, the response rate to immune checkpoint blockade is only 13% for recurrent HNSCC, highlighting the urgent need to better understand tumor-immune interplay, with the ultimate goal of improving patient outcomes. HNSCC present high local recurrence rates and therapy resistance that can be attributed to the presence of cancer stem cells (CSC) within tumors. CSC exhibit singular properties that enable them to avoid immune detection and eradication. How CSC communicate with immune cells and which immune cell types are preferentially found within the CSC niche are still open questions. Here, we used genetic approaches to specifically label CSC-derived extracellular vesicles (EVs) and to perform Sortase-mediated in vivo proximity labeling of CSC niche cells. We identified specific immune cell subsets that were selectively targeted by EVCSC and that were found in the CSC niche. Native EVCSC preferentially targeted MHC-II-macrophages and PD1+ T cells in the tumor microenvironment, which were the same immune cell subsets enriched within the CSC niche. These observations indicate that the use of genetic technologies able to track EVs without in vitro isolation are a valuable tool to unveil the biology of native EVCSC.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/patologia , Linfócitos T/patologia , Microambiente Tumoral , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/metabolismo , Vesículas Extracelulares/patologia
19.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131811

RESUMO

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

20.
Cells ; 11(9)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563751

RESUMO

Epidemiological studies reveal a correlation between air pollution exposure and gastrointestinal (GI) diseases, yet few studies have investigated the role of inhaled particulate matter on intestinal integrity in conjunction with a high-fat (HF) diet. Additionally, there is currently limited information on probiotics in mitigating air-pollutant responses in the intestines. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) and a HF diet can alter intestinal integrity and inflammation, which can be attenuated with probiotics. 4-6-w-old male C57Bl/6 mice on a HF diet (45% kcal fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg of DEP suspended in 35 µL of 0.9% sterile saline or sterile saline (CON) only twice a week for 4 w. A subset of mice was treated with 0.3 g/day of Winclove Ecologic® barrier probiotics (PRO) in drinking water throughout the duration of the study. Our results show that DEP exposure ± probiotics resulted in increased goblet cells and mucin (MUC)-2 expression, as determined by AB/PAS staining. Immunofluorescent quantification and/or RT-qPCR showed that DEP exposure increases claudin-3, occludin, zona occludens (ZO)-1, matrix metalloproteinase (MMP)-9, and toll-like receptor (TLR)-4, and decreases tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression compared to CON. DEP exposure + probiotics increases expression of claudin-3, occludin, ZO-1, TNF-α, and IL-10 and decreases MMP-9 and TLR-4 compared to CON + PRO in the small intestine. Collectively, these results show that DEP exposure alters intestinal integrity and inflammation in conjunction with a HF diet. Probiotics proved fundamental in understanding the role of the microbiome in protecting and altering inflammatory responses in the intestines following exposure to inhaled DEP.


Assuntos
Probióticos , Emissões de Veículos , Adjuvantes Imunológicos , Animais , Claudina-3 , Dieta Hiperlipídica/efeitos adversos , Fatores Imunológicos , Inflamação , Intestinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocludina , Probióticos/farmacologia , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA