Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5916-5921, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35834181

RESUMO

Metamaterial-assisted illumination nanoscopy (MAIN) has been proven to be a promising approach for super-resolution microscopy with up to a 7-fold improvement in imaging resolution. Further resolution enhancement is possible in principle, however, has not yet been demonstrated due to the lack of high-quality ultrathin layered hyperbolic metamaterials (HMMs) used in the MAIN. Here, we fabricate a low-loss composite HMM consisting of high-quality bilayers of Al-doped Ag and MgO with a nominal thickness of 2.5 nm, and then use it to demonstrate an ultrathin layered hyperbolic metamaterial-assisted illumination nanoscopy (ULH-MAIN) with a 14-fold imaging resolution improvement. This improvement of resolution is achieved in fluorescent beads super-resolution experiments and verified with scanning electron microscopy. The ULH-MAIN presents a simple super-resolution imaging approach that offers distinct benefits such as low illumination power, low cost, and a broad spectrum of selectable probes, making it ideal for dynamic imaging of life science samples.


Assuntos
Iluminação , Microscopia
2.
Science ; 381(6659): 766-771, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590345

RESUMO

Superlenses made of plasmonic materials and metamaterials can image features at the subdiffraction scale. However, intrinsic losses impose a serious restriction on imaging resolution, a problem that has hindered widespread applications of superlenses. Optical waves of complex frequency that exhibit a temporally attenuating behavior have been proposed to offset the intrinsic losses in superlenses through the introduction of virtual gain, but experimental realization has been lacking because of the difficulty of imaging measurements with temporal decay. In this work, we present a multifrequency approach to constructing synthetic excitation waves of complex frequency based on measurements at real frequencies. This approach allows us to implement virtual gain experimentally and observe deep-subwavelength images. Our work offers a practical solution to overcome the intrinsic losses of plasmonic systems for imaging and sensing applications.

3.
Adv Mater ; 33(9): e2006496, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506542

RESUMO

The dynamics of photons in fluorescent molecules plays a key role in fluorescence imaging, optical sensing, organic photovoltaics, and displays. Photobleaching is an irreversible photodegradation process of fluorophores, representing a fundamental limitation in relevant optical applications. Chemical reagents are used to suppress the photobleaching rate but with exceptionally high specificity for each type of fluorophore. Here, using organic hyperbolic materials (OHMs), an optical platform to achieve unprecedented fluorophore photostability without any chemical specificity is demonstrated. A more than 500-fold lengthening of the photobleaching lifetime and a 230-fold increase in the total emitted photon counts are observed simultaneously. These exceptional improvements solely come from the low-loss hyperbolic dispersion of OHM films and the large resultant Purcell effect in the visible spectral range. The demonstrated OHM platform may open up a new paradigm in nanophotonics and organic plasmonics for super-resolution imaging and the engineering of light-matter interactions at the nanoscale.

4.
Adv Sci (Weinh) ; 8(22): e2102230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436815

RESUMO

Resolution capability of the linear structured illumination microscopy (SIM) plays a key role in its applications in physics, medicine, biology, and life science. Many advanced methodologies have been developed to extend the resolution of structured illumination by using subdiffraction-limited optical excitation patterns. However, obtaining SIM images with a resolution beyond 40 nm at visible frequency remains as an insurmountable obstacle due to the intrinsic limitation of spatial frequency bandwidth of the involved materials and the complexity of the illumination system. Here, a low-loss natural organic hyperbolic material (OHM) that can support record high spatial-frequency modes beyond 50k0 , i.e., effective refractive index larger than 50, at visible frequencies is reported. OHM-based speckle structured illumination microscopy demonstrates imaging resolution at 30 nm scales with enhanced fluorophore photostability, biocompatibility, easy to use and low cost. This study will open up a new route in super-resolution microscopy by utilizing OHM films for various applications including bioimaging and sensing.


Assuntos
Iluminação/instrumentação , Iluminação/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Desenho de Equipamento , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA