Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(3): 698-709, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617677

RESUMO

Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural 'control' site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services.


Assuntos
Ecossistema , Musaranhos , Animais , Musaranhos/genética , Invertebrados , Espécies Introduzidas , Dieta/veterinária
2.
Proc Biol Sci ; 288(1957): 20210552, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403636

RESUMO

Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.


Assuntos
Microbiota , Micobioma , Animais , Bactérias/genética , Interações entre Hospedeiro e Microrganismos , Filogenia
3.
R Soc Open Sci ; 7(4): 200288, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32431911

RESUMO

The colonization of Ireland by mammals has been the subject of extensive study using genetic methods and forms a central problem in understanding the phylogeography of European mammals after the Last Glacial Maximum. Ireland exhibits a depauperate mammal fauna relative to Great Britain and continental Europe, and a range of natural and anthropogenic processes have given rise to its modern fauna. Previous Europe-wide surveys of the European badger (Meles meles) have found conflicting microsatellite and mitochondrial DNA evidence in Irish populations, suggesting Irish badgers have arisen from admixture between human imported British and Scandinavian animals. The extent and history of contact between British and Irish badger populations remains unclear. We use comprehensive genetic data from Great Britain and Ireland to demonstrate that badgers in Ireland's northeastern and southeastern counties are genetically similar to contemporary British populations. Simulation analyses suggest this admixed population arose in Ireland 600-700 (CI 100-2600) years before present most likely through introduction of British badgers by people. These findings add to our knowledge of the complex colonization history of Ireland by mammals and the central role of humans in facilitating it.

4.
Microbiologyopen ; 8(4): e00700, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597773

RESUMO

Nitrilase enzymes (EC 3.5.5.1) are responsible for the direct hydration of nitriles to their corresponding carboxylic acids and ammonia. The utilization of nitrilase enzymes in biocatalysis toward bio-pharmaceuticals and industrial applications facilitates the move towards green chemistry. The body of research presented describes a novel clade-specific touchdown PCR protocol for the detection of novel nitrilase genes. The presented study identified partial sequences of 15 novel nitrilase genes across 7 genera, with partial DNA sequence homology (%) displayed across an additional 16 genera. This research will prove valuable in the screening of microorganisms for the identification of novel clade-specific nitrilase genes, with predicted enantioselective profiles as determined by their clade characterizations.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Microbiologia Ambiental , Hidroliases/genética , Reação em Cadeia da Polimerase/métodos , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biocatálise , Ácidos Carboxílicos/metabolismo , Clonagem Molecular , Hidroliases/química , Hidroliases/metabolismo , Nitrilas/metabolismo , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
5.
Ecol Evol ; 8(20): 10233-10246, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397461

RESUMO

The population genetic structure of free-ranging species is expected to reflect landscape-level effects. Quantifying the role of these factors and their relative contribution often has important implications for wildlife management. The population genetics of the European badger (Meles meles) have received considerable attention, not least because the species acts as a potential wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland. Herein, we detail the most comprehensive population and landscape genetic study of the badger in Ireland to date-comprised of 454 Irish badger samples, genotyped at 14 microsatellite loci. Bayesian and multivariate clustering methods demonstrated continuous clinal variation across the island, with potentially distinct differentiation observed in Northern Ireland. Landscape genetic analyses identified geographic distance and elevation as the primary drivers of genetic differentiation, in keeping with badgers exhibiting high levels of philopatry. Other factors hypothesized to affect gene flow, including earth worm habitat suitability, land cover type, and the River Shannon, had little to no detectable effect. By providing a more accurate picture of badger population structure and the factors effecting it, these data can guide current efforts to manage the species in Ireland and to better understand its role in bTB.

6.
Mol Ecol Resour ; 13(5): 877-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23870402

RESUMO

Developing strategies to maintain biodiversity requires baseline information on the current status of each individual species. The development of genetic techniques and their application to noninvasively collected samples have the potential to yield information on the structure of elusive animal populations and so are important tools in conservation management. Using DNA isolated from faecal samples can be challenging owing to low quantity and quality. This study, however, presents the development of novel real-time polymerase chain reaction assays using fluorescently labelled TaqMan(®) MGB probes enabling species and sex identification of Eurasian otter (Lutra lutra) spraints (faeces). These assays can also be used in determining an optimum microsatellite panel and can be employed as cost-saving screening tools for downstream genetic testing including microsatellite genotyping and haplotype analysis. The techniques are shown to work efficiently with L. lutra DNA isolated from tissue, hair, spraint, blood and anal jelly samples.


Assuntos
Lontras/classificação , Lontras/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise para Determinação do Sexo/métodos , Animais , DNA/genética , DNA/isolamento & purificação , Fezes/química , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA