Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 132(4): 255-261, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27889414

RESUMO

We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(ß-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB), TA-1887, and canagliflozin-were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1) elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Hipoglicemiantes/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Canagliflozina/farmacologia , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monossacarídeos/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos , Ratos Endogâmicos F344 , Fosfato de Sitagliptina/farmacologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Tiazolidinas/farmacologia
2.
J Pharmacol Exp Ther ; 354(3): 279-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26105952

RESUMO

The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(ß-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Mucosa Intestinal/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Células CHO , Cricetulus , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Glucose/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Transportador 2 de Glucose-Sódio/metabolismo
3.
J Pharmacol Sci ; 127(4): 456-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25892328

RESUMO

To assess the impact of concomitant inhibition of sodium-glucose cotransporter (SGLT) 2 and dipeptidyl peptidase IV (DPP4) for the treatment of type 2 diabetes mellitus (T2DM), the effect of combined treatment with canagliflozin, a novel SGLT2 inhibitor, and teneligliptin, a DPP4 inhibitor, on glucose intolerance was investigated in Zucker diabetic fatty (ZDF) rats. Canagliflozin potently inhibited human and rat SGLT2 and moderately inhibited human and rat SGLT1 activities but did not affect DPP4 activity. In contrast, teneligliptin inhibited human and rat DPP4 activities but not SGLT activities. A single oral treatment of canagliflozin and teneligliptin suppressed plasma glucose elevation in an oral glucose tolerance test in 13 week-old ZDF rats. This combination of agents elevated plasma active GLP-1 levels in a synergistic manner, probably mediated by intestinal SGLT1 inhibition, and further improved glucose intolerance. In the combination-treated animals, there was no pharmacokinetic interaction of the drugs and no further inhibition of plasma DPP4 activity compared with that in the teneligliptin-treated animals. These results suggest that the inhibition of SGLT2 and DPP4 improves glucose intolerance and that combined treatment with canagliflozin and teneligliptin is a novel therapeutic option for glycemic control in T2DM.


Assuntos
Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Intolerância à Glucose/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Administração Oral , Animais , Canagliflozina/administração & dosagem , Células Cultivadas , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/sangue , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Quimioterapia Combinada , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Pirazóis/administração & dosagem , Ratos Zucker , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinas/administração & dosagem
4.
Sci Rep ; 11(1): 14237, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244578

RESUMO

Brain endothelial cells (BECs) are involved in the pathogenesis of ischemic stroke. Recently, several microRNAs (miRNAs) in BECs were reported to regulate the endothelial function in ischemic brain. Therefore, modulation of miRNAs in BECs by a therapeutic oligonucleotide to inhibit miRNA (antimiR) could be a useful strategy for treating ischemic stroke. However, few attempts have been made to achieve this strategy via systemic route due to lack of efficient delivery-method toward BECs. Here, we have developed a new technology for delivering an antimiR into BECs and silencing miRNAs in BECs, using a mouse ischemic stroke model. We designed a heteroduplex oligonucleotide, comprising an antimiR against miRNA-126 (miR-126) known as the endothelial-specific miRNA and its complementary RNA, conjugated to α-tocopherol as a delivery ligand (Toc-HDO targeting miR-126). Intravenous administration of Toc-HDO targeting miR-126 remarkably suppressed miR-126 expression in ischemic brain of the model mice. In addition, we showed that Toc-HDO targeting miR-126 was delivered into BECs more efficiently than the parent antimiR in ischemic brain, and that it was delivered more effectively in ischemic brain than non-ischemic brain of this model mice. Our study highlights the potential of this technology as a new clinical therapeutic option for ischemic stroke.


Assuntos
MicroRNAs/genética , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico , alfa-Tocoferol/química , Animais , Encéfalo/metabolismo , Linhagem Celular , Imuno-Histoquímica , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Eur J Neurosci ; 31(8): 1359-67, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20384770

RESUMO

We previously demonstrated that N-methyl-D-aspartate (NMDA) treatment (50 microM, 3 h) induced astrocytic production of monocyte chemoattractant protein-1 (MCP-1, CCL2), a CC chemokine implicated in ischemic and excitotoxic brain injury, in rat corticostriatal slice cultures. In this study, we investigated the signaling mechanisms for NMDA-induced MCP-1 production in slice cultures. The results showed a close correlation between NMDA-induced neuronal injury and MCP-1 production, and an abrogation of NMDA-induced MCP-1 production in NMDA-pretreated slices where neuronal cells had been eliminated. These results collectively indicate that NMDA-induced neuronal injury led to astrocytic MCP-1 production. NMDA-induced MCP-1 production was significantly inhibited by U0126, an inhibitor of extracellular signal-regulated kinase (ERK). Immunostaining for phosphorylated ERK revealed that transient neuronal ERK activation was initially induced and subsided within 30 min, followed by sustained ERK activation in astrocytes. Treatment with U0126 during only the early phase (U0126 was washed out at 15 or 30 min after NMDA administration) suppressed early activation of ERK in neuronal cells, but not later activation of ERK in astrocytes. In this case, MCP-1 production was not suppressed, suggesting that activation of neuronal ERK is not necessary for MCP-1 production. In contrast, delayed application of U0126 at 3 h after the beginning of NMDA treatment inhibited MCP-1 production to the same degree as that observed when U0126 was applied from 3 h before NMDA administration. These findings suggest that sustained activation of the ERK signaling pathway in astrocytes plays a key role in neuronal injury-induced MCP-1 production.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Quimiocina CCL2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/enzimologia , Butadienos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Nitrilas/farmacologia , Fosforilação , Ratos , Ratos Wistar , Fatores de Tempo
6.
PLoS One ; 10(12): e0145849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26720709

RESUMO

Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired ß-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic ß-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve ß-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.


Assuntos
Descoberta de Drogas , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Glicemia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Ensaios de Triagem em Larga Escala , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Ratos , Ratos Zucker , Receptores Acoplados a Proteínas G/genética , Bibliotecas de Moléculas Pequenas , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA